Effect of Separation on Ductile Crack Propagation Behavior During Drop Weight Tear Test

The demand for natural gas using LNG and pipelines to supply the world gas markets is increasing. The use of high-strength line pipe provides a reduction in the cost of gas transmission pipelines by enabling high-pressure transmission of large volumes of gas. Under the large demand of high-strength line pipe, crack arrestability of running ductile fracture behavior is one of the most important properties. The CVN (Charpy V-notched) test and the DWTT (Drop Weight Tear Test) are major test methods to evaluate the crack arrestability of running ductile fractures. Separation, which is defined as a fracture parallel to the rolling plane, can be characteristic of the fracture in both full-scale burst tests and DWTTs. It is reported that separations deteriorate the crack arrestability of running ductile fracture, and also that small amounts of separation do not affect the running ductile fracture resistance. This paper describes the effect of separation on ductile propagation behavior. We utilized a high-speed camera to investigate the CTOA (Crack Tip Opening Angle) during the DWTT. We show that some separations deteriorate ductile crack propagation resistance and that some separations do not affect the running ductile fracture resistance.Copyright © 2010 by ASME