Eigenvalues of complementary Lidstone boundary value problems

AbstractWe consider the following complementary Lidstone boundary value problem (-1)my(2m+1)(t)=λF(t,y(t),y′(t)),t∈(0,1)y(0)=0,y(2k-1)(0)=y(2k-1)(1)=0,1≤k≤m where λ > 0. The values of λ are characterized so that the boundary value problem has a positive solution. Moreover, we derive explicit intervals of λ such that for any λ in the interval, the existence of a positive solution of the boundary value problem is guaranteed. Some examples are also included to illustrate the results obtained. Note that the nonlinear term F depends on y' and this derivative dependence is seldom investigated in the literature.AMS Subject Classification: 34B15.

[1]  G. J. Lidstone Notes on the Extension of Aitken's Theorem (for Polynomial Interpolation) to the Everett Types. , 1930 .

[2]  Hillel Poritsky On certain polynomial and other approximations to analytic functions , 1932 .

[3]  J. M. Whittaker On Lidstone's Series and Two-Point Expansions of Analytic Functions , 1934 .

[4]  J. M. Whittaker Interpolatory function theory , 1935 .

[5]  I. J. Schoenberg On certain two-point expansions of integral functions of exponential type , 1936 .

[6]  D V Widder,et al.  Functions Whose Even Derivatives Have a Prescribed Sign. , 1940, Proceedings of the National Academy of Sciences of the United States of America.

[7]  R. P. Boas,et al.  A note on functions of exponential type , 1941 .

[8]  D. V. Widder,et al.  Completely convex functions and Lidstone series , 1942 .

[9]  Jr. R. P. Boas,et al.  Representation of functions by Lidstone series , 1943 .

[10]  Leo F. Boron,et al.  Positive solutions of operator equations , 1964 .

[11]  M. Newman,et al.  Interpolation and approximation , 1965 .

[12]  Peter Forster,et al.  Existenzaussagen und Fehlerabschätzungen bei gewissen nichtlinearen Randwertaufgaben mit gewöhnlichen Differentialgleichungen , 1967 .

[13]  P. Förster Existenzaussagen und Fehlerabschätzungen bei gewissen nichtlinearen Randwertaufgaben mit gewöhnlichen Differentialgleichungen , 1967 .

[14]  Georgios Akrivis,et al.  Boundary value problems occurring in plate deflection theory , 1982 .

[15]  Gary W. Howell,et al.  Best error bounds for derivatives in two point Birkhoff interpolation problems , 1983 .

[16]  P. Baldwin,et al.  Asymptotic estimates of the eigenvalues of a sixth-order boundary-value problem obtained by using global phase-integral methods , 1987, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[17]  P. Baldwin,et al.  Localised instability in a bénard layer , 1987 .

[18]  Ravi P. Agarwal,et al.  Lidstone polynomials and boundary value problems , 1989 .

[19]  E. H. Twizell,et al.  Numerical methods for the solution of special and general sixth-order boundary-value problems, with applications to Bénard layer eigenvalue problems , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[20]  Edward H. Twizell,et al.  Finite-difference methods for twelfth-order boundary-value problems , 1991 .

[21]  Ravi P. Agarwal,et al.  Quasilinearization and approximate quasilinearization for lidstone boundary value problems , 1992, Int. J. Comput. Math..

[22]  Ravi P. Agarwal,et al.  Error Inequalities in Polynomial Interpolation and their Applications , 1993 .

[23]  Ravi P. Agarwal,et al.  Sharp error bounds for the derivatives of Lidstone-spline interpolation II , 1994 .

[24]  B. Garay,et al.  Discretization of semilinear differential equations with an exponential dichotomy , 1994 .

[25]  Ravi P. Agarwal,et al.  Explicit error bounds for the derivatives of piecewise-Lidstone interpolation , 1995 .

[26]  Lokenath Debnath,et al.  Hydromagnetic instability of a gravitating finite resistive fluid layer sandwiched in a different fluid , 1996 .

[27]  D. O’Regan,et al.  Positive Solutions of Differential, Difference and Integral Equations , 1998 .

[28]  John M. Davis,et al.  Triple positive solutions and dependence on higher order derivatives , 1999 .

[29]  John M. Davis,et al.  General Lidstone problems : Multiplicity and symmetry of solutions , 2000 .

[30]  Johnny Henderson,et al.  Extremal points for impulsive Lidstone boundary value problems , 2000 .

[31]  Qingliu Yao,et al.  On the positive solutions of Lidstone boundary value problems , 2003, Appl. Math. Comput..

[32]  Yanping Guo,et al.  TWIN POSITIVE SYMMETRIC SOLUTIONS FOR LIDSTONE BOUNDARY VALUE PROBLEMS , 2004 .

[33]  Francesco Dell'Accio,et al.  Lidstone approximation on the triangle , 2005 .

[34]  F. Costabile,et al.  Explicit polynomial expansions of regular real functions by means of even order Bernoulli polynomials and boundary values , 2005 .

[35]  Yuhong Ma Existence of positive solutions of Lidstone boundary value problems , 2006 .

[36]  Annarosa Serpe,et al.  An algebraic approach to Lidstone polynomials , 2007, Appl. Math. Lett..

[37]  Ravi P. Agarwal,et al.  Complementary Lidstone Interpolation and Boundary Value Problems , 2009 .

[38]  Nan-jing Huang,et al.  Viscosity Approximation of Common Fixed Points for -Lipschitzian Semigroup of Pseudocontractive Mappings in Banach Spaces , 2009 .

[39]  Ravi P. Agarwal,et al.  Piecewise complementary Lidstone interpolation and error inequalities , 2010, J. Comput. Appl. Math..

[40]  Ali Muhammad,et al.  11 – Interpolation and Approximation , 2011 .

[41]  P. Davis Interpolation and approximation , 1965 .