Quasi-invariants of complex reflection groups

Abstract We introduce quasi-invariant polynomials for an arbitrary finite complex reflection group W. Unlike in the Coxeter case, the space of quasi-invariants of a given multiplicity is not, in general, an algebra but a module Qk over the coordinate ring of a (singular) affine variety Xk. We extend the main results of Berest et al. [Cherednik algebras and differential operators on quasi-invariants, Duke Math. J. 118 (2003), 279–337] to this setting: in particular, we show that the variety Xk and the module Qk are Cohen–Macaulay, and the rings of differential operators on Xk and Qk are simple rings, Morita equivalent to the Weyl algebra An(ℂ) , where n=dim Xk. Our approach relies on representation theory of complex Cherednik algebras introduced by Dunkl and Opdam [Dunkl operators for complex reflection groups, Proc. London Math. Soc. (3) 86 (2003), 70–108] and is parallel to that of Berest et al. As an application, we prove the existence of shift operators for an arbitrary complex reflection group, confirming a conjecture of Dunkl and Opdam. Another result is a proof of a conjecture of Opdam, concerning certain operations (KZ twists) on the set of irreducible representations of W.

[1]  J. T. Stafford,et al.  Differential Operators on an Affine Curve , 1988 .

[2]  V. Ginzburg,et al.  Cherednik algebras and differential operators on quasi-invariants , 2001, math/0111005.

[3]  Robert Steinberg,et al.  DIFFERENTIAL EQUATIONS INVARIANT UNDER FINITE REFLECTION GROUPS , 1964 .

[4]  Graded cofinite rings of differential operators , 2004, math/0403493.

[5]  Yuri Ivanovich On M-quasi-invariants of a Coxeter Group , 2003 .

[6]  Charles F. Dunkl,et al.  Integral Kernels with Reflection Group Invariance , 1991, Canadian Journal of Mathematics.

[7]  J. McConnell,et al.  Noncommutative Noetherian Rings , 2001 .

[8]  A. Veselov,et al.  Algebraic integrability for the Schrödinger equation and finite reflection groups , 1993 .

[9]  P. M. Cohn GROUPES ET ALGÉBRES DE LIE , 1977 .

[10]  A. Cohen,et al.  Finite complex reflection groups , 1976 .

[11]  Iain Gordon On the quotient ring by diagonal invariants , 2003 .

[12]  Y. Berest The problem of lacunas and analysis on root systems , 2000 .

[13]  A. Veselov,et al.  Multidimensional Baker–Akhiezer Functions and Huygens' Principle , 1999 .

[14]  A. Veselov,et al.  Commutative rings of partial differential operators and Lie algebras , 1990 .

[15]  G. Heckman A Remark on the Dunkl Differential—Difference Operators , 1991 .

[16]  Charles F. Dunkl,et al.  Differential-difference operators associated to reflection groups , 1989 .

[17]  Action of Coxeter groups on m-harmonic polynomials and KZ equations , 2001, math/0108012.

[18]  Adriano M. Garsia,et al.  The non-degeneracy of the bilinear form of m-Quasi-Invariants , 2006, Adv. Appl. Math..

[19]  A. Joseph,et al.  The enright functor on the Bernstein-Gelfand-Gelfand category $$\mathcal{O}$$ , 1982 .

[20]  Victor Ginzburg,et al.  Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism , 2000 .

[21]  Victor Ginzburg,et al.  On the category 𝒪 for rational Cherednik algebras , 2002 .

[22]  E. Opdam Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group , 1993 .

[23]  A. Veselov,et al.  Quasi-invariants of Coxeter groups and m-harmonic polynomials , 2001 .

[24]  S. Montgomery Fixed Rings of Finite Automorphism Groups of Associative Rings , 1980 .

[25]  Raphael Rouquier q-Schur algebras and complex reflection groups, I , 2005 .

[26]  Complex Reflection Groups and Fake Degrees , 1998, math/9808026.

[27]  Some new Applications of Orbit Harmonics by , 2004 .

[28]  I. Cherednik Lectures on Knizhnik-Zamolodchikov equations and Hecke algebras , 1998 .

[29]  Victor Ginzburg On primitive ideals , 2002 .

[30]  I. Gordon,et al.  Rational Cherednik algebras and Hilbert schemes , 2004 .

[31]  E. Opdam Lecture notes on Dunkl operators for real and complex reflection groups , 2000 .

[32]  C. Dunkl,et al.  Singular polynomials for finite reflection groups , 1994 .

[33]  C. F. Dunkl,et al.  Dunkl operators for complex reflection groups , 2001 .

[34]  C. Chevalley Invariants of Finite Groups Generated by Reflections , 1955 .

[35]  G. C. Shephard,et al.  Finite Unitary Reflection Groups , 1954, Canadian Journal of Mathematics.

[36]  E. Opdam A remark on the irreducible characters and fake degrees of finite real reflection groups , 1995 .

[37]  A. Veselov,et al.  Action of Coxeter Groups on m-Harmonic Polynomials and Knizhnik—Zamolodchikov Equations , 2003 .

[38]  Cusps and D-modules , 2002, math/0212094.

[39]  Gunter Malle,et al.  COMPLEX REFLECTION GROUPS, BRAID GROUPS, HECKE ALGEBRAS , 1998 .

[40]  Gregg Musiker,et al.  A new characterization for the m-quasiinvariants of Sn and explicit basis for two row hook shapes , 2008, J. Comb. Theory, Ser. A.