Satellite chip shape distortions lead to signal tracking errors in pseudorange measurements, which are related to the receiver manufacturers, called receiver-related pseudorange biases. Such biases will lead to adverse effects for differential code bias (DCB) and satellite clock estimation, single point positioning (SPP) and precise point positioning (PPP) applications with pseudoranges. In order to assess the characteristics of receiver-related pseudorange biases for global positioning system (GPS), Galileo navigation satellite system (Galileo) and BeiDou navigation satellite system (BDS), seven short baselines from the Multi-GNSS experiment (MGEX) network are tested. The results demonstrate that there are significant inconsistences of pseudorange biases according to satellites, frequencies, receiver and antenna types. For the baselines using the same receivers of TRIMBLE, pseudorange biases are within ±0.2 ns with the same antennas, while they increase to ±0.6 ns with the different antennas. As for baselines with mixed receiver types, pseudorange biases can reach up to 2.5 ns. Among GPS/Galileo/BDS, Galileo shows the smallest pseudorange biases, and the obvious inconsistences of pseudorange biases are observed between BDS-2 and BDS-3, and Galileo in-orbit validation (IOV) satellites and full operational configuration (FOC) satellites. In order to validate receiver-related pseudorange biases, we carry out relative positioning experiments using short baselines. The results show that the RMS values of position errors are reduced 12.6% and 11.4% in horizontal and vertical components with biases correction. The impacts of receiver-related pseudorange biases on wide-lane (WL) ambiguity are also discussed. The results indicate that the percentage of the fractional parts within ±0.1 cycles have an obvious increase with the pseudorange biases correction, and RMS values of the fractional parts are reduced 28.9% and 67.6% for GPS and BDS, respectively.