Cytotoxic glucosyltransferases of Legionella pneumophila.

[1]  Y. Abu Kwaik,et al.  Cellular microbiology and molecular ecology of Legionella–amoeba interaction , 2013, Virulence.

[2]  Li Xu,et al.  Cell biology of infection by Legionella pneumophila. , 2013, Microbes and infection.

[3]  G. Segal,et al.  Identification of legionella effectors using bioinformatic approaches. , 2013, Methods in molecular biology.

[4]  D. Boyd,et al.  Aggravating Genetic Interactions Allow a Solution to Redundancy in a Bacterial Pathogen , 2012, Science.

[5]  M. Ehrlich,et al.  Identification of Two Legionella pneumophila Effectors that Manipulate Host Phospholipids Biosynthesis , 2012, PLoS pathogens.

[6]  Y. Mao,et al.  Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase , 2012, Proceedings of the National Academy of Sciences.

[7]  T. Kinzy,et al.  The many roles of the eukaryotic elongation factor 1 complex , 2012, Wiley interdisciplinary reviews. RNA.

[8]  K. Aktories,et al.  Elongation Factor 1A Is the Target of Growth Inhibition in Yeast Caused by Legionella pneumophila Glucosyltransferase Lgt1* , 2012, The Journal of Biological Chemistry.

[9]  R. Green,et al.  Translation drives mRNA quality control , 2012, Nature Structural &Molecular Biology.

[10]  K. Aktories,et al.  Domain organization of Legionella effector SetA , 2012, Cellular microbiology.

[11]  I. F. Belyĭ,et al.  [Prevalence of glucosyl transferase Lgt among Legionella pneumophila strains isolated from various sources]. , 2012, Zhurnal mikrobiologii, epidemiologii, i immunobiologii.

[12]  R. Goody,et al.  Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins , 2012, The EMBO journal.

[13]  M. Rodnina,et al.  Aminoacyl-tRNA-Charged Eukaryotic Elongation Factor 1A Is the Bona Fide Substrate for Legionella pneumophila Effector Glucosyltransferases , 2011, PloS one.

[14]  Zhao‐Qing Luo,et al.  Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination , 2011, Proceedings of the National Academy of Sciences.

[15]  R. Goody,et al.  Protein LidA from Legionella is a Rab GTPase supereffector , 2011, Proceedings of the National Academy of Sciences.

[16]  J. Galán,et al.  Modulation of Rab GTPase function by a protein phosphocholine transferase , 2011, Nature.

[17]  A. Yergey,et al.  De-AMPylation of the Small GTPase Rab1 by the Pathogen Legionella pneumophila , 2011, Science.

[18]  Zhao‐Qing Luo,et al.  Legionella pneumophila SidD is a deAMPylase that modifies Rab1 , 2011, Nature.

[19]  R. Isberg,et al.  Control of Host Cell Phosphorylation by Legionella Pneumophila , 2011, Front. Microbio..

[20]  Zhao-Qing Luo,et al.  Comprehensive Identification of Protein Substrates of the Dot/Icm Type IV Transporter of Legionella pneumophila , 2011, PloS one.

[21]  H. Hilbi,et al.  Anchors for Effectors: Subversion of Phosphoinositide Lipids by Legionella , 2011, Front. Microbio..

[22]  K. Aktories,et al.  Effector Glycosyltransferases in Legionella , 2011, Front. Microbio..

[23]  R. Vance,et al.  Secreted Bacterial Effectors That Inhibit Host Protein Synthesis Are Critical for Induction of the Innate Immune Response to Virulent Legionella pneumophila , 2011, PLoS pathogens.

[24]  Zhao-Qing Luo,et al.  The E Block motif is associated with Legionella pneumophila translocated substrates , 2010, Cellular microbiology.

[25]  R. Goody,et al.  High‐affinity binding of phosphatidylinositol 4‐phosphate by Legionella pneumophila DrrA , 2010, EMBO reports.

[26]  D. Raoult,et al.  Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. , 2010, FEMS microbiology reviews.

[27]  M. Swanson,et al.  Inhibition of Host Vacuolar H+-ATPase Activity by a Legionella pneumophila Effector , 2010, PLoS pathogens.

[28]  A. Prescott,et al.  Molecular mechanism of elongation factor 1A inhibition by a Legionella pneumophila glycosyltransferase. , 2010, The Biochemical journal.

[29]  K. Aktories,et al.  Structural basis of the action of glucosyltransferase Lgt1 from Legionella pneumophila. , 2010, Journal of molecular biology.

[30]  K. Aktories,et al.  Bacterial toxin and effector glycosyltransferases. , 2010, Biochimica et biophysica acta.

[31]  C. Buchrieser,et al.  Analysis of the Legionella longbeachae Genome and Transcriptome Uncovers Unique Strategies to Cause Legionnaires' Disease , 2010, PLoS genetics.

[32]  M. Frace,et al.  Virulence Factors Encoded by Legionella longbeachae Identified on the Basis of the Genome Sequence Analysis of Clinical Isolate D-4968 , 2009, Journal of bacteriology.

[33]  B. Bauer,et al.  Temporal resolution of two‐tracked NF‐κB activation by Legionella pneumophila , 2009, Cellular microbiology.

[34]  X. Charpentier,et al.  The perplexing functions and surprising origins of Legionella pneumophila type IV secretion effectors , 2009, Cellular microbiology.

[35]  Shan Li,et al.  A Legionella type IV effector activates the NF-κB pathway by phosphorylating the IκB family of inhibitors , 2009, Proceedings of the National Academy of Sciences.

[36]  E. Nudler,et al.  Targeting eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response , 2009, Cellular microbiology.

[37]  K. Aktories,et al.  Region of Elongation Factor 1A1 Involved in Substrate Recognition by Legionella pneumophila Glucosyltransferase Lgt1 , 2009, The Journal of Biological Chemistry.

[38]  H. Hilbi,et al.  Pathogen trafficking pathways and host phosphoinositide metabolism , 2009, Molecular microbiology.

[39]  H. Hilbi,et al.  Rab1 Guanine Nucleotide Exchange Factor SidM Is a Major Phosphatidylinositol 4-Phosphate-binding Effector Protein of Legionella pneumophila , 2009, Journal of Biological Chemistry.

[40]  M. Heidtman,et al.  Large‐scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways , 2009, Cellular microbiology.

[41]  C. Roy,et al.  Modulation of ubiquitin dynamics and suppression of DALIS formation by the Legionella pneumophila Dot/Icm system , 2009, Cellular microbiology.

[42]  R. Isberg,et al.  Legionella pneumophila Dot/Icm translocated substrates: a sum of parts. , 2009, Current opinion in microbiology.

[43]  M. Heidtman,et al.  The Legionella pneumophila replication vacuole: making a cosy niche inside host cells , 2009, Nature Reviews Microbiology.

[44]  H. Hilbi,et al.  The Legionella pneumophila phosphatidylinositol‐4 phosphate‐binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication‐permissive vacuole , 2008, Cellular microbiology.

[45]  O. Anderson,et al.  Legionella Eukaryotic-Like Type IV Substrates Interfere with Organelle Trafficking , 2008, PLoS pathogens.

[46]  G J Davies,et al.  Glycosyltransferases: structures, functions, and mechanisms. , 2008, Annual review of biochemistry.

[47]  G. Schulz,et al.  Conformational changes and reaction of clostridial glycosylating toxins. , 2008, Journal of molecular biology.

[48]  K. Aktories,et al.  Lgt: a Family of Cytotoxic Glucosyltransferases Produced by Legionella pneumophila , 2008, Journal of bacteriology.

[49]  B. Diederen Legionella spp. and Legionnaires' disease. , 2008, The Journal of infection.

[50]  D. Lambright,et al.  Legionella pneumophila proteins that regulate Rab1 membrane cycling , 2007, Nature.

[51]  R. Isberg,et al.  A Bifunctional Bacterial Protein Links GDI Displacement to Rab1 Activation , 2007, Science.

[52]  K. Aktories,et al.  Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function. , 2007, Glycobiology.

[53]  W. Zong,et al.  Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family , 2007, Proceedings of the National Academy of Sciences.

[54]  T. Zusman,et al.  The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii , 2007, Molecular microbiology.

[55]  J. Suttles,et al.  Anti‐apoptotic signalling by the Dot/Icm secretion system of L. pneumophila , 2007, Cellular microbiology.

[56]  R. Isberg,et al.  A Legionella pneumophila-translocated substrate that is required for growth within macrophages and protection from host cell death , 2006, Proceedings of the National Academy of Sciences.

[57]  M. Wilm,et al.  Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A , 2006, Proceedings of the National Academy of Sciences.

[58]  D. Toomre,et al.  The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor , 2006, Nature Cell Biology.

[59]  M. Jules,et al.  Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila , 2006, Cellular microbiology.

[60]  H. Hilbi,et al.  Legionella pneumophila Exploits PI(4)P to Anchor Secreted Effector Proteins to the Replicative Vacuole , 2006, PLoS pathogens.

[61]  C. Pericone,et al.  Evidence for Acquisition of Legionella Type IV Secretion Substrates via Interdomain Horizontal Gene Transfer , 2005, Journal of bacteriology.

[62]  B. Ramakrishnan,et al.  Substrate-induced conformational changes in glycosyltransferases. , 2005, Trends in biochemical sciences.

[63]  H. Stenmark,et al.  Phosphatidylinositol 3-phosphate is found in microdomains of early endosomes , 2003, Histochemistry and Cell Biology.

[64]  N. Cianciotto,et al.  Purification and Characterization of a UDP-Glucosyltransferase Produced by Legionella pneumophila , 2003, Infection and Immunity.

[65]  V. Ramakrishnan,et al.  Ribosome Structure and the Mechanism of Translation , 2002, Cell.

[66]  R. Kahn,et al.  A Bacterial Guanine Nucleotide Exchange Factor Activates ARF on Legionella Phagosomes , 2002, Science.

[67]  J. Nyborg,et al.  Structural Basis for Nucleotide Exchange and Competition with tRNA in the Yeast Elongation Factor Complex eEF1A:eEF1Bα , 2000 .

[68]  S. Munro,et al.  A Common Motif of Eukaryotic Glycosyltransferases Is Essential for the Enzyme Activity of Large Clostridial Cytotoxins* , 1998, The Journal of Biological Chemistry.

[69]  S. Munro,et al.  Activity of the yeast MNN1 alpha-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[70]  M. Swanson,et al.  Expression of Legionella pneumophilaVirulence Traits in Response to Growth Conditions , 1998, Infection and Immunity.

[71]  Rolf Hilgenfeld,et al.  An α to β conformational switch in EF-Tu , 1996 .

[72]  M. Yoder,et al.  An alpha to beta conformational switch in EF-Tu. , 1996, Structure.

[73]  M. Mann,et al.  Glucosylation of Rho proteins by Clostridium difficile toxin B , 1995, Nature.

[74]  M. Werner-Washburne,et al.  The translation machinery and 70 kd heat shock protein cooperate in protein synthesis , 1992, Cell.

[75]  R. Morimoto,et al.  Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. , 1991, Genes & development.