Irreducible charge density matrices for analysis of many‐electron wave functions

A novel procedure for deriving multicenter bond indices on the basis of irreducible spinless charge density matrices that are naturally introduced as in the Ursell-Mayer theory is presented. Unlike earlier schemes using central moments of the charge operator, the procedure presented here leads to a proper definition of multicenter bond indices for an arbitrary number of atoms. Formal relationships and numerical techniques for the typical configuration interaction (CI) approaches, up to full CI, are given and illustrated with simple molecular systems. Comparison of the molecular orbital and full CI results indicates strong electron correlation effects, especially for the 3-center and 4-center bond indices. Excited state multicenter bond indices are described within the CI singles approach. The problem of proper definition of atomic valence and bond indices for electronic states with nonzero spin is raised.

[1]  R. Mcweeny Spins in chemistry , 1970 .

[2]  G. Whyman,et al.  Structure and spin‐purity conditions for reduced density matrices of arbitrary order , 1981 .

[3]  Tapas Kar,et al.  Three-center bond index , 1990 .

[4]  Marco Häser Characterization of Electronic Structure in Molecules by One-Center Expansion Techniques. No Three-Center Four-Electron Bond in PF5 , 1996 .

[5]  P. Kollman,et al.  Encyclopedia of computational chemistry , 1998 .

[6]  R. Mcweeny Some Recent Advances in Density Matrix Theory , 1960 .

[7]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[8]  K. Kladko,et al.  ON THE PROPERTIES OF CUMULANT EXPANSIONS , 1998 .

[9]  Michael J. Frisch,et al.  Toward a systematic molecular orbital theory for excited states , 1992 .

[10]  M. Karplus,et al.  Valence-bond bond-order formulation for contact nuclear spin-spin coupling , 1969 .

[11]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[12]  Jerzy Cioslowski,et al.  Covalent bond orders in the topological theory of atoms in molecules , 1991 .

[13]  Steven E. Wheeler,et al.  Binding energies of small lithium clusters (Li(n)) and hydrogenated lithium clusters (Li(n)H). , 2004, The Journal of chemical physics.

[14]  R. Ponec,et al.  Population analysis of pair densities : a link between quantum chemical and classical picture of chemical structure , 1994 .

[15]  R. Bader,et al.  Spatial localization of the electronic pair and number distributions in molecules , 1975 .

[16]  W. Kutzelnigg,et al.  Irreducible Brillouin conditions and contracted Schrodinger equations for n-electron systems. II. Spin-free formulation , 2002 .

[17]  A. V. Luzanov The Structure of the Electronic Excitation of Molecules in Quantum-chemical Models , 1980 .

[18]  Ernest R. Davidson,et al.  Distribution of effectively unpaired electrons , 2000 .

[19]  Josef Paldus,et al.  Coupled Cluster Theory , 1992 .

[20]  István Mayer,et al.  Charge, bond order and valence in the AB initio SCF theory , 1983 .

[21]  J. E. Harriman Limitation on the density-equation approach to many-electron problems , 1979 .

[22]  A. J. Coleman THE STRUCTURE OF FERMION DENSITY MATRICES , 1963 .

[23]  T. Kar,et al.  Ab initio theoretical study of three-centre bonding on the basis of bond index , 2000 .

[24]  A wavefunction operator approach to the full-CI problem , 1992 .

[25]  C. David Sherrill,et al.  The Configuration Interaction Method: Advances in Highly Correlated Approaches , 1999 .

[26]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[27]  W. Kutzelnigg n‐Electron problem and its formulation in terms of k‐particle density cumulants , 2003 .

[28]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[29]  J. E. Harriman Geometry of density matrices. III. Spin components , 1979 .

[30]  David A. Mazziotti,et al.  3,5-CONTRACTED SCHRODINGER EQUATION : DETERMINING QUANTUM ENERGIES AND REDUCED DENSITY MATRICES WITHOUT WAVE FUNCTIONS , 1998 .

[31]  Roberto C. Bochicchio,et al.  On spin density and hole distribution relations: valence and free valence , 1998 .

[32]  H. C. Longuet-Higgins,et al.  The electronic structure of conjugated systems II. Unsaturated hydrocarbons and their hetero-derivatives , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[33]  A. J. Coleman,et al.  Reduced Density Matrices , 2000 .

[34]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[35]  R. Bochicchio,et al.  Bond Orders and Their Relationships with Cumulant and Unpaired Electron Densities , 2003 .

[36]  N. Bogolyubov Lectures on quantum statistics , 1967 .

[37]  G. Diercksen,et al.  Methods in Computational Molecular Physics , 1983 .

[38]  R. Rousseau,et al.  Ab initio calculations on small lithium clusters , 1997 .

[39]  Keith R. Roby,et al.  Quantum theory of chemical valence concepts , 1974 .

[40]  A. V. Luzanov,et al.  Separation of spin and the fock coordinate wave function method in the N-representability problem , 1976 .

[41]  Werner Kutzelnigg,et al.  Generalized k-particle brillouin conditions and their use for the construction of correlated electronic wavefunctions , 1979 .

[42]  Ilya Prigogine,et al.  Non-equilibrium statistical mechanics , 1962 .

[43]  R. Ponec,et al.  MULTICENTRE BOND INDICES FROM THE GENERALIZED POPULATION ANALYSIS OF HIGHER ORDER DENSITIES , 1996 .

[44]  T. Kar,et al.  Some remarks on multi-center bond index , 1999 .

[45]  K. C. Mundim,et al.  Multicenter Bond Index: Grassmann Algebra and N-Order Density Functional , 1994 .

[46]  Frank E. Harris,et al.  Cumulant-based approximations to reduced density matrices , 2002 .

[47]  Peter J. Knowles,et al.  A new determinant-based full configuration interaction method , 1984 .

[48]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[49]  Ron Shepard,et al.  C2V Insertion pathway for BeH2: A test problem for the coupled‐cluster single and double excitation model , 1983 .

[50]  J. Cioslowski,et al.  The atomic softness matrix , 1994 .

[51]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[52]  Xavier Fradera,et al.  The Lewis Model and Beyond , 1999 .

[53]  J. Leszczynski,et al.  Nature of binding in the alkaline–earth clusters: Be3, Mg3, and Ca3 , 2000 .

[54]  J. Lennard-jones,et al.  Molecular Spectra and Molecular Structure , 1929, Nature.

[55]  島内 みどり,et al.  G. Herzberg: Molecular Spectra and Molecular Structure. III. Electronic Spectra and Electronic Structure of Polyatomic Molecules, D. Van Nostrand, Prinston 1966, 745頁, 16.5×24cm, 8,000円. , 1968 .

[56]  H. C. Longuet-Higgins,et al.  The electronic structure of conjugated systems I. General theory , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[57]  R. Kubo GENERALIZED CUMULANT EXPANSION METHOD , 1962 .

[58]  Paul L. A. Popelier,et al.  The electron pair , 1996 .

[59]  Satoshi Suzuki,et al.  Configuration Analysis in the LCAO Molecular Orbital Theory , 1969 .

[60]  F. Fratev,et al.  Approaches for interpreting π electronic states and π electronic transitions , 1980 .

[61]  B. Judd,et al.  Reduced Density Matrices: Coulson's Challenge , 2000 .

[62]  Klaus Ruedenberg,et al.  The Physical Nature of the Chemical Bond , 1962 .

[63]  Nicholas C. Handy,et al.  Multi-root configuration interaction calculations , 1980 .

[64]  E. Davidson,et al.  Local spin II , 2002 .

[65]  H. Schaefer,et al.  Molecular clustering about a positive ion. Structures, energetics, and vibrational frequencies of the protonated hydrogen clusters H+3, H+5, H+7, and H+9 , 1983 .

[66]  Robert Ponec,et al.  Investigation of Some Properties of Multicenter Bond Indices , 1997 .

[67]  J. Ángyán,et al.  COVALENT BOND ORDERS AND ATOMIC VALENCE INDICES IN THE TOPOLOGICAL THEORY OF ATOMS IN MOLECULES , 1994 .

[68]  L. Salem Electrons in chemical reactions: First principles , 1982 .

[69]  T. Fueno,et al.  Electron Pair Concept and an Extension of the Penney-Dirac Bond Order , 1975 .

[70]  D. L. Cooper,et al.  Generalized population analysis of three‐center two‐electron bonding , 2004 .

[71]  Uttam Sinha Mahapatra,et al.  A size-consistent state-specific multireference coupled cluster theory: Formal developments and molecular applications , 1999 .

[72]  P. Gill,et al.  Computation of molecular Hartree-Fock Wigner intracules , 2003 .

[73]  W. Goddard,et al.  Correlation Analysis of Chemical Bonds , 1998 .

[74]  Anna I. Krylov,et al.  Size-consistent wave functions for bond-breaking: the equation-of-motion spin-flip model , 2001 .

[75]  O. Prezhdo,et al.  Weyl representation of the permutation operators and exchange interaction , 2004 .

[76]  Anna I. Krylov,et al.  Spin-flip configuration interaction: an electronic structure model that is both variational and size-consistent , 2001 .

[77]  H. Schmider ‘‘Low‐momentum electrons’’ and the electronic structure of small molecules , 1996 .

[78]  J. Pople CXXXIII. Dielectric polarization of a dipolar lattice , 1953 .

[79]  Peter C. Jurs,et al.  Mathematica , 2019, J. Chem. Inf. Comput. Sci..

[80]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[81]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[82]  Kazuo Takatsuka,et al.  The spin‐optimized SCF general spin orbitals. II. The 2 2S and 2 2P states of the lithium atom , 1978 .

[83]  Debashis Mukherjee,et al.  Irreducible Brillouin conditions and contracted Schrödinger equations for n-electron systems. I. The equations satisfied by the density cumulants , 2001 .

[84]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[85]  R. Ponec,et al.  Multicenter bonding within the AIM theory , 2001 .

[86]  A. Becke,et al.  Two functions of the density matrix and their relation to the chemical bond , 2002 .

[87]  H. Nakatsuji Equation for the direct determination of the density matrix , 1976 .