An integrated mitochondrial ROS production and scavenging model: implications for heart failure.

[1]  R. Winslow,et al.  A computational model of reactive oxygen species and redox balance in cardiac mitochondria. , 2013, Biophysical journal.

[2]  R. Winslow,et al.  Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model. , 2013, Biophysical journal.

[3]  Mark Friedman,et al.  Multistationary and Oscillatory Modes of Free Radicals Generation by the Mitochondrial Respiratory Chain Revealed by a Bifurcation Analysis , 2012, PLoS Comput. Biol..

[4]  Brian O'Rourke,et al.  Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study , 2012, The Journal of general physiology.

[5]  B. O’Rourke,et al.  Mitochondrial protein phosphorylation as a regulatory modality: implications for mitochondrial dysfunction in heart failure. , 2011, Congestive heart failure.

[6]  S. Vogt,et al.  The role of mitochondrial membrane potential in ischemic heart failure. , 2011, Mitochondrion.

[7]  Iain McDonald,et al.  Thioredoxin Reductase-2 Is Essential for Keeping Low Levels of H2O2 Emission from Isolated Heart Mitochondria* , 2011, The Journal of Biological Chemistry.

[8]  R. Winslow,et al.  Mitochondrial energetics, pH regulation, and ion dynamics: a computational-experimental approach. , 2011, Biophysical journal.

[9]  Josep Roca,et al.  Reactive Oxygen Species Production by Forward and Reverse Electron Fluxes in the Mitochondrial Respiratory Chain , 2011, PLoS Comput. Biol..

[10]  Domenico de Rasmo,et al.  The β-adrenoceptor agonist isoproterenol promotes the activity of respiratory chain complex I and lowers cellular reactive oxygen species in fibroblasts and heart myoblasts. , 2011, European journal of pharmacology.

[11]  B. O’Rourke,et al.  Role of mitochondrial dysfunction in cardiac glycoside toxicity. , 2010, Journal of molecular and cellular cardiology.

[12]  Dean P. Jones,et al.  A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. , 2010, Antioxidants & redox signaling.

[13]  Sebastian Vogt,et al.  Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase. , 2010, Biochimica et biophysica acta.

[14]  S. Cortassa,et al.  Redox-optimized ROS balance: a unifying hypothesis. , 2010, Biochimica et biophysica acta.

[15]  MichaelBöhm,et al.  Elevated Cytosolic Na+ Increases Mitochondrial Formation of Reactive Oxygen Species in Failing Cardiac Myocytes , 2010 .

[16]  C. Winterbourn,et al.  Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. , 2010, The Biochemical journal.

[17]  Josep Roca,et al.  Bistability of Mitochondrial Respiration Underlies Paradoxical Reactive Oxygen Species Generation Induced by Anoxia , 2009, PLoS Comput. Biol..

[18]  R. Winslow,et al.  Modeling cardiac action potential shortening driven by oxidative stress-induced mitochondrial oscillations in guinea pig cardiomyocytes. , 2009, Biophysical journal.

[19]  M. MacCoss,et al.  Overexpression of Catalase Targeted to Mitochondria Attenuates Murine Cardiac Aging , 2009, Circulation.

[20]  E. Murphy,et al.  Regulation of Intracellular and Mitochondrial Sodium in Health and Disease , 2009, Circulation research.

[21]  Jacky L Snoep,et al.  Enzymes or redox couples? The kinetics of thioredoxin and glutaredoxin reactions in a systems biology context. , 2009, The Biochemical journal.

[22]  Antonio Feliciello,et al.  Control of mitochondria dynamics and oxidative metabolism by cAMP, AKAPs and the proteasome. , 2008, Trends in cell biology.

[23]  M. Sarewicz,et al.  Movement of the iron-sulfur head domain of cytochrome bc(1) transiently opens the catalytic Q(o) site for reaction with oxygen. , 2008, Biochemistry.

[24]  Josep Roca,et al.  The Role of External and Matrix pH in Mitochondrial Reactive Oxygen Species Generation* , 2008, Journal of Biological Chemistry.

[25]  B. O’Rourke,et al.  Enhancing Mitochondrial Ca2+ Uptake in Myocytes From Failing Hearts Restores Energy Supply and Demand Matching , 2008, Circulation research.

[26]  U. Brandt,et al.  The Mechanism of Mitochondrial Superoxide Production by the Cytochrome bc1 Complex* , 2008, Journal of Biological Chemistry.

[27]  S. Cortassa,et al.  Sequential Opening of Mitochondrial Ion Channels as a Function of Glutathione Redox Thiol Status* , 2007, Journal of Biological Chemistry.

[28]  Brian O'Rourke,et al.  Elevated Cytosolic Na+ Decreases Mitochondrial Ca2+ Uptake During Excitation–Contraction Coupling and Impairs Energetic Adaptation in Cardiac Myocytes , 2006, Circulation research.

[29]  R. Raines,et al.  Semisynthesis and characterization of mammalian thioredoxin reductase. , 2006, Biochemistry.

[30]  M. A. A. P. Carvalho,et al.  Regulation of mitochondrial NADP-isocitrate dehydrogenase in rat heart during ischemia , 2006, Molecular and Cellular Biochemistry.

[31]  C. Horbinski,et al.  Serial Review : The powerhouse takes control of the cell : The role of mitochondria in signal transduction Serial Review , 2004 .

[32]  Raimond L Winslow,et al.  A mitochondrial oscillator dependent on reactive oxygen species. , 2004, Biophysical journal.

[33]  A. Holmgren,et al.  Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. , 2004, Antioxidants & redox signaling.

[34]  R. Tsien,et al.  Imaging Dynamic Redox Changes in Mammalian Cells with Green Fluorescent Protein Indicators* , 2004, Journal of Biological Chemistry.

[35]  Devin Oglesbee,et al.  Investigating Mitochondrial Redox Potential with Redox-sensitive Green Fluorescent Protein Indicators* , 2004, Journal of Biological Chemistry.

[36]  P. Boekstegers,et al.  Selective retroinfusion of GSH and cariporide attenuates myocardial ischemia-reperfusion injury in a preclinical pig model. , 2004, Cardiovascular research.

[37]  B. Kholodenko,et al.  Kinetic Modeling of Energy Metabolism and Superoxide Generation in Hepatocyte Mitochondria , 2001, Molecular Biology.

[38]  H. Wen,et al.  NADH enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP): applications to enzyme and mitochondrial reaction kinetics, in vitro. , 2004, Biophysical journal.

[39]  J. Hoerter,et al.  CK flux or direct ATP transfer: Versatility of energy transfer pathways evidenced by NMR in the perfused heart , 2004, Molecular and Cellular Biochemistry.

[40]  S. Houser,et al.  [Na+]i handling in the failing human heart. , 2003, Cardiovascular research.

[41]  Q. Jin,et al.  Kinetics of electron transfer through the respiratory chain. , 2002, Biophysical journal.

[42]  Lars S. Maier,et al.  Rate Dependence of [Na+]i and Contractility in Nonfailing and Failing Human Myocardium , 2002, Circulation.

[43]  Donald M Bers,et al.  Intracellular Na+ Concentration Is Elevated in Heart Failure But Na/K Pump Function Is Unchanged , 2002, Circulation.

[44]  A. Signorile,et al.  Cyclic adenosine monophosphate-dependent phosphorylation of mammalian mitochondrial proteins: enzyme and substrate characterization and functional role. , 2001, Biochemistry.

[45]  Ave Minajeva,et al.  Energetic Crosstalk Between Organelles: Architectural Integration of Energy Production and Utilization , 2001, Circulation research.

[46]  J. Schaper,et al.  Time course of the apoptotic cascade and effects of caspase inhibitors in adult rat ventricular cardiomyocytes. , 2001, Journal of molecular and cellular cardiology.

[47]  B. O’Rourke,et al.  Decreased Sarcoplasmic Reticulum Calcium Content Is Responsible for Defective Excitation-Contraction Coupling in Canine Heart Failure , 2001, Circulation.

[48]  B. Gamain,et al.  The Putative Glutathione Peroxidase Gene of Plasmodium falciparum Codes for a Thioredoxin Peroxidase* , 2001, The Journal of Biological Chemistry.

[49]  E. Cadenas,et al.  Estimation of H2O2 gradients across biomembranes , 2000, FEBS letters.

[50]  B. Kadenbach,et al.  The allosteric ATP‐inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP‐dependent phosphorylation , 2000, FEBS letters.

[51]  J. Starnes,et al.  Exogenous GSH protection during hypoxia-reoxygenation of the isolated rat heart: Impact of hypoxia duration , 2000, Free radical research.

[52]  AkiraTakeshita,et al.  Mitochondrial Electron Transport Complex I Is a Potential Source of Oxygen Free Radicals in the Failing Myocardium , 1999 .

[53]  B. Kholodenko,et al.  A model of O·2-generation in the complex III of the electron transport chain , 1998 .

[54]  D. Chatel,et al.  Elevated levels of 8-iso-prostaglandin F2alpha in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. , 1998, Circulation.

[55]  B. Kholodenko,et al.  A model of O2.-generation in the complex III of the electron transport chain. , 1998, Molecular and cellular biochemistry.

[56]  P. Singal,et al.  Right and left myocardial antioxidant responses during heart failure subsequent to myocardial infarction. , 1997, Circulation.

[57]  J. Keizer,et al.  Minimal model of beta-cell mitochondrial Ca2+ handling. , 1997, The American journal of physiology.

[58]  R. Altschuld,et al.  Metabolic Compartmentalization in Neonatal Swine Myocytes , 1996, Pediatric Research.

[59]  P. Singal,et al.  Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. , 1996, The American journal of pathology.

[60]  C H Davies,et al.  Reduced contraction and altered frequency response of isolated ventricular myocytes from patients with heart failure. , 1995, Circulation.

[61]  L. Sazanov,et al.  Proton‐translocating transhydrogenase and NAD‐ and NADP‐linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria , 1994, FEBS letters.

[62]  P. Singal,et al.  Antioxidant changes in hypertrophied and failing guinea pig hearts. , 1994, The American journal of physiology.

[63]  J. McMurray,et al.  Evidence of oxidative stress in chronic heart failure in humans. , 1993, European heart journal.

[64]  J. Belch,et al.  Oxygen free radicals and congestive heart failure. , 1991, British heart journal.

[65]  H. Gilbert Molecular and cellular aspects of thiol-disulfide exchange. , 2006, Advances in enzymology and related areas of molecular biology.

[66]  A. Holmgren,et al.  Thioredoxin and glutaredoxin systems. , 2019, The Journal of biological chemistry.

[67]  R. Spahr,et al.  Carbohydrate and fatty acid metabolism of cultured adult cardiac myocytes. , 1986, The American journal of physiology.

[68]  Arthur C. Guyton,et al.  Handbook of Physiology—The Cardiovascular System , 1985 .

[69]  B. Mannervik,et al.  [59] Glutathione reductase , 1985 .

[70]  I. Carlberg,et al.  Glutathione reductase. , 1985, Methods in enzymology.

[71]  E. Reid CHAPTER 5 – Carbohydrate and Fatty Acid Metabolism , 1965 .