Estimation of SARS-CoV-2 Infection Fatality Rate by Real-time Antibody Screening of Blood Donors

Background: The pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has tremendous consequences for our societies. Knowledge of the seroprevalence of SARS-CoV-2 is needed to accurately monitor the spread of the epidemic and also to calculate the infection fatality rate (IFR). These measures may help the authorities to make informed decisions and adjust the current societal interventions. Blood donors comprise approximately 4.7% of the similarly aged population of Denmark and blood is donated in all areas of the country. The objective of this study was to perform real-time seroprevalence surveying among blood donors as a tool to estimate previous SARS-CoV-2 infections and the population based IFR. Methods: All Danish blood donors aged 17-69 years giving blood April 6 to 17 were tested for SARS-CoV-2 immunoglobulin M and G antibodies using a commercial lateral flow test. Antibody status was compared between areas and an estimate of the IFR was calculated. The seroprevalence was adjusted for assay sensitivity and specificity taking the uncertainties of the test validation into account when reporting the 95% confidence intervals (CI). Results: The first 9,496 blood donors were tested and a combined adjusted seroprevalence of 1.7% (CI: 0.9-2.3) was calculated. The seroprevalence differed across areas. Using available data on fatalities and population numbers a combined IFR in patients younger than 70 is estimated at 82 per 100,000 (CI: 59-154) infections. Conclusions: The IFR was estimated to be slightly lower than previously reported from other countries not using seroprevalence data. The IFR, including only individuals with no comorbidity, is likely several fold lower than the current estimate. This may have implications for risk mitigation. We have initiated real-time nationwide anti-SARS-CoV-2 seroprevalence surveying of blood donations as a tool in monitoring the epidemic.

[1]  Akihide Ryo,et al.  Interpreting Diagnostic Tests for SARS-CoV-2. , 2020, JAMA.

[2]  S. Ruan Likelihood of survival of coronavirus disease 2019 , 2020, The Lancet Infectious Diseases.

[3]  C. Whittaker,et al.  Estimates of the severity of coronavirus disease 2019: a model-based analysis , 2020, The Lancet Infectious Diseases.

[4]  Centers for Disease Control and Prevention CDC COVID-19 Response Team Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) — United States, February 12–March 16, 2020 , 2020, MMWR. Morbidity and mortality weekly report.

[5]  Hannah R. Meredith,et al.  The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application , 2020, Annals of Internal Medicine.

[6]  Lei Liu,et al.  Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019 , 2020, medRxiv.

[7]  Ting Yu,et al.  Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study , 2020, The Lancet Respiratory Medicine.

[8]  H. Ullum,et al.  Socio-demographic characteristics of Danish blood donors , 2017, PloS one.

[9]  H. Ullum,et al.  Blood donation and blood donor mortality after adjustment for a healthy donor effect , 2015, Transfusion.

[10]  Jincun Zhao,et al.  T Cell Responses Are Required for Protection from Clinical Disease and for Virus Clearance in Severe Acute Respiratory Syndrome Coronavirus-Infected Mice , 2010, Journal of Virology.