Cu(111) single crystal electrodes: Modifying interfacial properties to tailor electrocatalysis

[1]  J. Kunze‐Liebhäuser,et al.  Interfacial Water Structure as a Descriptor for Its Electro-Reduction on Ni(OH)2-Modified Cu(111) , 2021, ACS catalysis.

[2]  J. Kunze‐Liebhäuser,et al.  The Potential of Zero Charge and the Electrochemical Interface Structure of Cu(111) in Alkaline Solutions , 2021, The journal of physical chemistry. C, Nanomaterials and interfaces.

[3]  M. Escudero‐Escribano,et al.  Tailored electrocatalysts by controlled electrochemical deposition and surface nanostructuring. , 2020, Chemical communications.

[4]  G. Simon,et al.  Potential‐Dependent Morphology of Copper Catalysts During CO2 Electroreduction Revealed by In Situ Atomic Force Microscopy , 2020, Angewandte Chemie.

[5]  V. Climent,et al.  Elucidating the Structure of the Cu-Alkaline Electrochemical Interface with the Laser-Induced Temperature Jump Method , 2020 .

[6]  K. Reuter,et al.  Self-activation of copper electrodes during CO electro-oxidation in alkaline electrolyte , 2020, Nature Catalysis.

[7]  I. Chorkendorff,et al.  Fingerprint Voltammograms of Copper Single Crystals under Alkaline Conditions: A Fundamental Mechanistic Analysis. , 2020, The journal of physical chemistry letters.

[8]  E. Ticianelli,et al.  Hydrogen evolution reaction on copper: Promoting water dissociation by tuning the surface oxophilicity , 2019, Electrochemistry Communications.

[9]  J. Kunze‐Liebhäuser,et al.  A universal quasi-reference electrode for in situ EC-STM , 2019, Electrochemistry Communications.

[10]  M. Koper,et al.  Effect of the Interfacial Water Structure on the Hydrogen Evolution Reaction on Pt(111) Modified with Different Nickel Hydroxide Coverages in Alkaline Media. , 2018, ACS applied materials & interfaces.

[11]  L. Cavallo,et al.  Roughening of Copper (100) at Elevated CO Pressure: Cu Adatom and Cluster Formation Enable CO Dissociation , 2018, The journal of physical chemistry. C, Nanomaterials and interfaces.

[12]  N. Marzari,et al.  Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction , 2018, Nature Communications.

[13]  Jong Min Lee,et al.  Direct visualization of current-induced spin accumulation in topological insulators , 2018, Nature Communications.

[14]  M. Biesinger Advanced analysis of copper X‐ray photoelectron spectra , 2017 .

[15]  M. Koper,et al.  Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes , 2017, Nature Energy.

[16]  D. Torelli,et al.  Surface reconstruction of pure-Cu single-crystal electrodes under CO-reduction potentials in alkaline solutions: A study by seriatim ECSTM-DEMS , 2016 .

[17]  Boštjan Genorio,et al.  Design principles for hydrogen evolution reaction catalyst materials , 2016 .

[18]  Lin-wang Wang,et al.  One-dimensional nanoclustering of the Cu(100) surface under CO gas in the mbar pressure range , 2016 .

[19]  Lin-Wang Wang,et al.  Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption , 2016, Science.

[20]  P. Broekmann,et al.  From In Situ towards In Operando Conditions: Scanning Tunneling Microscopy Study of Hydrogen Intercalation in Cu(111) during Hydrogen Evolution , 2014 .

[21]  F. Calle‐Vallejo,et al.  Tailoring the catalytic activity of electrodes with monolayer amounts of foreign metals. , 2013, Chemical Society reviews.

[22]  Nenad M Markovic,et al.  Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. , 2012, Angewandte Chemie.

[23]  Maria Chan,et al.  Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. , 2012, Nature materials.

[24]  M. Biesinger,et al.  The role of the Auger parameter in XPS studies of nickel metal, halides and oxides. , 2012, Physical chemistry chemical physics : PCCP.

[25]  V. Stamenkovic,et al.  Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces , 2011, Science.

[26]  E. Herrero,et al.  Formic acid oxidation , 2010 .

[27]  Andrea R. Gerson,et al.  Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn , 2010 .

[28]  Hisayoshi Matsushima,et al.  Reconstruction of Cu(100) electrode surfaces during hydrogen evolution. , 2009, Journal of the American Chemical Society.

[29]  G. Waychunas,et al.  Nucleation, Growth, and Aggregation of Mineral Phases: Mechanisms and Kinetic Controls , 2008 .

[30]  J. Feliu,et al.  Spontaneous deposition of Sn on Au(111). An in situ STM study , 2008 .

[31]  V. Climent,et al.  Evidence of water reorientation on model electrocatalytic surfaces from nanosecond-laser-pulsed experiments. , 2008, Journal of the American Chemical Society.

[32]  P. Marcus,et al.  In Situ STM Study of the Initial Stages of Anodic Oxidation of Cu(111) in the Presence of Sulfates , 2003 .

[33]  P. Marcus,et al.  In situ STM study of the effect of chlorides on the initial stages of anodic oxidation of Cu(111) in alkaline solutions , 2003 .

[34]  J. Hommrich,et al.  Underpotential deposition of cadmium on Cu(1 1 1) and Cu(1 0 0) , 2003 .

[35]  J. Hommrich,et al.  Cadmium underpotential deposition on Cu(111) in situ scanning tunneling microscopy. , 2002, Faraday discussions.

[36]  R. Compton,et al.  Coulostatic Potential Transients Induced by Laser Heating of a Pt(111) Single-Crystal Electrode in Aqueous Acid Solutions. Rate of Hydrogen Adsorption and Potential of Maximum Entropy , 2002 .

[37]  R. Compton,et al.  Laser-Induced Potential Transients on a Au(111) Single-Crystal Electrode. Determination of the Potential of Maximum Entropy of Double-Layer Formation , 2002 .

[38]  M. Arenz,et al.  In‐situ Characterization of Metal/Electrolyte Interfaces: Sulfate Adsorption on Cu(111) , 2001 .

[39]  H. Abruña,et al.  Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. , 2001, Chemical reviews.

[40]  P. Marcus,et al.  In situ STM study of the initial stages of oxidation of Cu(111) in aqueous solution , 2000 .

[41]  V. Climent,et al.  Electrocatalysis of formic acid and CO oxidation on antimony-modified Pt(111) electrodes , 1998 .

[42]  I. Robinson,et al.  Properties of an electrochemically deposited Pb monolayer on Cu(111) , 1997 .

[43]  J. Frohn,et al.  Step dynamics on Ag(111) and Cu(100) surfaces , 1992 .

[44]  H. Schmidt,et al.  The stability of CuO and Cu2O surfaces during argon sputtering studied by XPS and AES , 1985 .

[45]  R. C. Propst Undervoltage effects in the determination of silver by scanning coulometry , 1968 .

[46]  A. Foelske-Schmitz X-Ray Photoelectron Spectroscopy in Electrochemistry Research , 2013 .

[47]  C. Vayenas Interfacial phenomena in electrocatalysis , 2011 .

[48]  V. Climent,et al.  Potential-dependent water orientation on Pt(1 1 1) stepped surfaces from laser-pulsed experiments , 2009 .

[49]  E. Roden Microbiological Controls on Geochemical Kinetics 2: Case Study on Microbial Oxidation of Metal Sulfide Minerals and Future Prospects , 2008 .

[50]  M. Arenz,et al.  Atomic Structure of Cu(111) Surfaces in Dilute Sulfuric Acid Solution , 2003 .

[51]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[52]  J. Feliu,et al.  Irreversible Adsorption of Metal Atoms in Electrocatalysis , 1991 .