Rod contributions to color perception: Linear with rod contrast

At mesopic light levels, an incremental change in rod activation causes changes in color appearance. In this study, we investigated how rod mediated changes in color perception varied as a function of the magnitude of the rod contrast. Rod-mediated changes in color appearance were assessed by matching them with cone-mediated color changes. A two-channel four-primary colorimeter allowed independent control of the rods and each of the L-, M- and S-cone photoreceptor types. At all light levels, rod contributions to inferred PC, KC and MC pathway mediated vision were linearly related to the rod incremental contrast. This linear relationship could be described by a model based on primate ganglion cell responses with the assumption that rod signals were conveyed via rod-cone gap junctions at mesopic light levels.

[1]  Joel Pokorny,et al.  Linking impulse response functions to reaction time: Rod and cone reaction time data and a computational model , 2007, Vision Research.

[2]  Andrew J. Zele,et al.  Dark-adapted rod suppression of cone flicker detection: Evaluation of receptoral and postreceptoral interactions , 2006, Visual Neuroscience.

[3]  J. Pokorny,et al.  Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights. , 1992, The Journal of physiology.

[4]  D. Hood,et al.  Interactions between rod and cone channels above threshold: A test of various models , 1982, Vision Research.

[5]  Andrew J. Zele,et al.  Chromatic discrimination in the presence of incremental and decremental rod pedestals , 2008, Visual Neuroscience.

[6]  K. D. De Valois,et al.  A multi-stage color model. , 1993, Vision research.

[7]  Joel Pokorny,et al.  Audiophile hardware in vision science; the soundcard as a digital to analog converter , 2005, Journal of Neuroscience Methods.

[8]  S. Buck,et al.  Opponent-color models and the influence of rod signals on the loci of unique hues , 2000, Vision Research.

[9]  J. Robson,et al.  Response linearity and kinetics of the cat retina: The bipolar cell component of the dark-adapted electroretinogram , 1995, Visual Neuroscience.

[10]  J. Pokorny,et al.  How surrounds affect chromaticity discrimination. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[11]  John D. Mollon,et al.  Normal and Defective Colour Vision , 2003 .

[12]  J. Pokorny,et al.  Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.

[13]  H. Kolb,et al.  Uniqueness of the S‐cone pedicle in the human retina and consequences for color processing , 1997, The Journal of comparative neurology.

[14]  Joel Pokorny,et al.  Photostimulator allowing independent control of rods and the three cone types , 2004, Visual Neuroscience.

[15]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[16]  M. Ikeda,et al.  Mesopic luminous-efficiency functions. , 1981, Journal of the Optical Society of America.

[17]  J. Pokorny,et al.  Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[18]  W. R. Taylor,et al.  Transmission of single photon signals through a binary synapse in the mammalian retina , 2004, Visual Neuroscience.

[19]  J. Pokorny,et al.  Chromatic Contrast Discrimination: Data and Prediction for Stimuli Varying in L and M Cone Excitation , 2000 .

[20]  Vicki J. Volbrecht,et al.  The Influence of Rods on Colour Naming During Dark Adaptation , 2003 .

[21]  R. Lythgoe,et al.  DARK-ADAPTATION AND THE PERIPHERAL COLOUR SENSATIONS OF NORMAL SUBJECTS , 1931, The British journal of ophthalmology.

[22]  J. Pokorny,et al.  Psychophysical Correlates of Parvo- and Magnocellular Function , 2003 .

[23]  Joel Pokorny,et al.  Responses to pulses and sinusoids in macaque ganglion cells , 1994, Vision Research.

[24]  Victor A. F. Lamme,et al.  Masking interrupts figure-ground signals in V1 , 2010 .

[25]  Leo Maurice Hurvich,et al.  Color vision , 1981 .

[26]  Joel Pokorny,et al.  Spatial and temporal chromatic contrast: Effects on chromatic discrimination for stimuli varying in L- and M-cone excitation , 2006, Visual Neuroscience.

[27]  Lindsay T. Sharpe,et al.  Rod pathways: the importance of seeing nothing , 1999, Trends in Neurosciences.

[28]  J. L. Schnapf,et al.  Gap-Junctional Coupling and Absolute Sensitivity of Photoreceptors in Macaque Retina , 2005, The Journal of Neuroscience.

[29]  R. Shapley,et al.  Background light and the contrast gain of primate P and M retinal ganglion cells. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[30]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[31]  R. L. Valois,et al.  A multi-stage color model , 1993, Vision Research.

[32]  V C Smith,et al.  Brightness induction from rods. , 2001, Journal of vision.

[33]  B. Stabell,et al.  The effect of rod acitvity on colour matching functions , 1975, Vision Research.

[34]  J. Pokorny,et al.  Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color-defective observers , 1996, Vision Research.

[35]  J. Mollon,et al.  A reduction in stimulus duration can improve wavelength discriminations mediated by short-wave cones , 1992, Vision Research.

[36]  B. B. Lee,et al.  Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation. , 1983, Journal of neurophysiology.

[37]  G. Fowler,et al.  Rod influence on hue-scaling functions , 1998, Vision Research.

[38]  V C Smith,et al.  Temporal modulation sensitivity and pulse-detection thresholds for chromatic and luminance perturbations. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[39]  Barry B. Lee,et al.  Mesopic spectral responses and the purkinje shift of macaque lateral geniculate nucleus cells , 1987, Vision Research.

[40]  S. Massey,et al.  Rod pathways in the mammalian retina use connexin 36 , 2001, The Journal of comparative neurology.

[41]  Joel Pokorny,et al.  Matching rod percepts with cone stimuli , 2004, Vision Research.

[42]  J. Pokorny,et al.  Rod-cone interactions assessed in inferred magnocellular and parvocellular postreceptoral pathways. , 2001, Journal of vision.

[43]  Joel Pokorny,et al.  S-cone discrimination for stimuli with spatial and temporal chromatic contrast , 2008, Visual Neuroscience.

[44]  V C Smith,et al.  Cone-rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.

[45]  Joel Pokorny,et al.  Rod inputs to macaque ganglion cells , 1997, Vision Research.

[46]  Vision Research , 1961, Nature.

[47]  P Gouras,et al.  Rod and cone interaction in dark‐adapted monkey ganglion cells , 1966, The Journal of physiology.

[48]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.