Unconditionally superconvergent error estimates of a linearized Galerkin finite element method for the nonlinear thermistor problem
暂无分享,去创建一个
[1] Y. Liu,et al. Unconditionally optimal error estimates of a linearized weak Galerkin finite element method for semilinear parabolic equations , 2022, Advances in Computational Mathematics.
[2] Linzhang Lu,et al. New superconvergence estimates of FEM for time-dependent Joule heating problem , 2022, Comput. Math. Appl..
[3] Kai Wang,et al. Convergence Analysis of Crank–Nicolson Galerkin–Galerkin FEMs for Miscible Displacement in Porous Media , 2020, Journal of Scientific Computing.
[4] Weiwei Sun,et al. New analysis of Galerkin-mixed FEMs for incompressible miscible flow in porous media , 2020, Math. Comput..
[5] Dongyang Shi,et al. Superconvergence analysis of nonconforming FEM for nonlinear time-dependent thermistor problem , 2019, Appl. Math. Comput..
[6] Ling Jian,et al. Laplace error penalty-based M-type model detection for a class of high dimensional semiparametric models , 2019, J. Comput. Appl. Math..
[7] Jilu Wang,et al. Unconditional stability and convergence of Crank–Nicolson Galerkin FEMs for a nonlinear Schrödinger–Helmholtz system , 2018, Numerische Mathematik.
[8] D. Shi,et al. Superconvergent estimates of conforming finite element method for nonlinear time‐dependent Joule heating equations , 2018 .
[9] Dongyang Shi,et al. Unconditional optimal error estimates of a two-grid method for semilinear parabolic equation , 2017, Appl. Math. Comput..
[10] Dongyang Shi,et al. Unconditional Superconvergence Analysis of a Crank–Nicolson Galerkin FEM for Nonlinear Schrödinger Equation , 2017, Journal of Scientific Computing.
[11] Weiwei Sun,et al. Stability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon , 2017, Numerische Mathematik.
[12] Weiwei Sun,et al. Optimal error analysis of Crank-Nicolson schemes for a coupled nonlinear Schrödinger system in 3D , 2017, J. Comput. Appl. Math..
[13] Dongfang Li,et al. Unconditionally Optimal Error Analysis of Crank–Nicolson Galerkin FEMs for a Strongly Nonlinear Parabolic System , 2017, J. Sci. Comput..
[14] Dongyang Shi,et al. Unconditional superconvergence analysis of conforming finite element for nonlinear parabolic equation , 2017, Appl. Math. Comput..
[15] Weiwei Sun,et al. Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations , 2015, Numerische Mathematik.
[16] Rong An,et al. Optimal Error Estimates of Linearized Crank–Nicolson Galerkin Method for Landau–Lifshitz Equation , 2016, J. Sci. Comput..
[17] Huadong Gao,et al. Unconditional Optimal Error Estimates of BDF–Galerkin FEMs for Nonlinear Thermistor Equations , 2016, J. Sci. Comput..
[18] Dongyang Shi,et al. Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation , 2014, Appl. Math. Lett..
[19] Huadong Gao,et al. Optimal Error Estimates of a Linearized Backward Euler FEM for the Landau-Lifshitz Equation , 2014, SIAM J. Numer. Anal..
[20] Jilu Wang,et al. A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..
[21] Weiwei Sun,et al. Optimal Error Estimates of Linearized Crank-Nicolson Galerkin FEMs for the Time-Dependent Ginzburg-Landau Equations in Superconductivity , 2014, SIAM J. Numer. Anal..
[22] Huadong Gao. Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations , 2014, J. Sci. Comput..
[23] Weiwei Sun,et al. Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..
[24] Buyang Li,et al. Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations , 2012, 1208.4698.
[25] Weiwei Sun,et al. Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..
[26] Xiangsheng Xu,et al. Existence for the thermoelastic thermistor problem , 2006 .
[27] Stig Larsson,et al. Linearly Implicit Finite Element Methods for the Time-Dependent Joule Heating Problem , 2005 .
[28] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[29] Walter Allegretto,et al. Existence and long time behaviour of solutions to obstacle thermistor equations , 2002 .
[30] Zhao Weidong,et al. Finite difference method and its convergent error analyses for thermistor problem , 1999 .
[31] Ya-Zhe Chen,et al. Second Order Elliptic Equations and Elliptic Systems , 1998 .
[32] D. R. Westbrook,et al. Numerical solutions of the thermistor equations , 1997 .
[33] Charles M. Elliott,et al. A finite element model for the time-dependent Joule heating problem , 1995 .
[34] Guangwei Yuan,et al. Existence and uniqueness of the C a solution for the thermistor problem with mixed boundary value , 1994 .
[35] Guangwei Yuan,et al. Regularity of solutions of the thermistor problem , 1994 .
[36] Giovanni Cimatti,et al. Existence of weak solutions for the nonstationary problem of the Joule heating of a conductor , 1992 .
[37] R. Rannacher,et al. Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .
[38] Dongyang Shi,et al. Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.
[39] Peter Kuster. Finite Element Methods And Their Applications , 2016 .
[40] Dongyang Shi,et al. Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016, Appl. Math. Comput..
[41] Qun Lin,et al. Finite element methods : accuracy and improvement = 有限元方法 : 精度及其改善 , 2006 .
[42] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[43] W. Allegretto,et al. Existence of solutions for the time-dependent thermistor equations , 1992 .