Evaluating technological quality of okara flours obtained by different drying processes

[1]  Marco Antônio Pereira da Silva,et al.  Okara flour: its physicochemical, microscopical and functional properties , 2019, Nutrition & Food Science.

[2]  Gires Teboukeu Boungo,et al.  Characterization of corn, cassava, and commercial flours: Use of amylase‐rich flours of germinated corn and sweet potato in the reduction of the consistency of the gruels made from these flours—Influence on the nutritional and energy value , 2019, Food science & nutrition.

[3]  Daniele Silva Lima,et al.  Characterization of corn (Zea mays L.) bran as a new food ingredient for snack bars , 2019, LWT.

[4]  F. Shahidi,et al.  Soybean ultrasound pre-treatment prior to soaking affects β-glucosidase activity, isoflavone profile and soaking time. , 2018, Food chemistry.

[5]  P. Rupérez,et al.  Soybean Okara modulates gut microbiota in rats fed a high-fat diet , 2018, Bioactive Carbohydrates and Dietary Fibre.

[6]  V. C. Siqueira,et al.  Drying kinetics of blackberry leaves , 2018, Revista Brasileira de Engenharia Agrícola e Ambiental.

[7]  A. Lemes,et al.  Okara: A soybean by-product as an alternative to enrich vegetable paste , 2018, LWT.

[8]  O. Resende,et al.  Thermodynamic properties and drying kinetics of ‘okara’ , 2018, Revista Brasileira de Engenharia Agrícola e Ambiental.

[9]  L. M. Rodríguez-Alcalá,et al.  Impact of different thermal treatments and storage conditions on the stability of soybean byproduct (okara) , 2018, Journal of Food Measurement and Characterization.

[10]  L. Valgimigli,et al.  Methods To Measure the Antioxidant Activity of Phytochemicals and Plant Extracts. , 2018, Journal of agricultural and food chemistry.

[11]  M. Campderrós,et al.  Quality assessment of dried okara as a source of production of gluten-free flour. , 2017, Journal of the science of food and agriculture.

[12]  K. Zaheer,et al.  An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health , 2017, Critical reviews in food science and nutrition.

[13]  S. Garcia,et al.  Optimization of the fermentation parameters for the growth of Lactobacillus in soymilk with okara flour , 2016 .

[14]  Shaoquan Liu,et al.  Okara (soybean residue) biotransformation by yeast Yarrowia lipolytica. , 2016, International journal of food microbiology.

[15]  Shaoquan Liu,et al.  Biovalorisation of okara (soybean residue) for food and nutrition , 2016 .

[16]  O. Omoba,et al.  Optimization of production and quality evaluation of maize‐based snack supplemented with soybean and tiger‐nut (Cyperus esculenta) flour , 2016, Food science & nutrition.

[17]  R. Malik,et al.  Soy Bioactive Components in Functional Perspective: A Review , 2016 .

[18]  E. Ida,et al.  Changes in soymilk during fermentation with kefir culture: oligosaccharides hydrolysis and isoflavone aglycone production , 2015, International journal of food sciences and nutrition.

[19]  H. Attia,et al.  Structural, functional, and ACE inhibitory properties of water-soluble polysaccharides from chickpea flours. , 2015, International journal of biological macromolecules.

[20]  R. Amorati,et al.  Advantages and limitations of common testing methods for antioxidants , 2015, Free radical research.

[21]  M. Barać,et al.  Mineral elements, lipoxygenase activity, and antioxidant capacity of okara as a byproduct in hydrothermal processing of soy milk. , 2014, Journal of agricultural and food chemistry.

[22]  E. Ida,et al.  Optimisation of soy flour fermentation parameters to produce β-glucosidase for bioconversion into aglycones. , 2014, Food chemistry.

[23]  Bo Li,et al.  Okara dietary fiber and hypoglycemic effect of okara foods , 2013 .

[24]  V. Mariani,et al.  Numerical and experimental analysis of the heat and mass transfer during okara drying , 2012 .

[25]  E. Ida,et al.  Optimization of soy isoflavone extraction with different solvents using the simplex-centroid mixture design , 2012, International journal of food sciences and nutrition.

[26]  M. Benassi,et al.  Physicochemical and sensory profile of rice bran roasted in microwave , 2012 .

[27]  G. Yadav,et al.  Process Optimization for the Extraction of Polyphenols from Okara , 2011 .

[28]  K. Vishwanathan,et al.  Influence of particle size on protein extractability from soybean and okara , 2011 .

[29]  A. Ismail,et al.  Antioxidant capacity, phenolics and isoflavones in soybean by-products , 2010 .

[30]  I. Mateos-Aparicio,et al.  Isolation and characterisation of cell wall polysaccharides from legume by-products: Okara (soymilk residue), pea pod and broad bean pod , 2010 .

[31]  J. Pérez‐Jiménez,et al.  Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil , 2010 .

[32]  J. Boye,et al.  Pulse proteins: Processing, characterization, functional properties and applications in food and feed , 2010 .

[33]  T. Beta,et al.  Comparison of antioxidant capacity and phenolic compounds of berries, chokecherry and seabuckthorn , 2009, Central European Journal of Biology.

[34]  V. Mariani,et al.  Convective Drying Kinetics and Darkening of Okara , 2009 .

[35]  P. Rupérez,et al.  Indigestible fraction of okara from soybean: composition, physicochemical properties and in vitro fermentability by pure cultures of Lactobacillus acidophilus and Bifidobacterium bifidum , 2009 .

[36]  Tao Wu,et al.  Comparison of hot air‐drying and freeze‐drying on the physicochemical properties and antioxidant activities of pumpkin (Cucurbita moschata Duch.) flours , 2008 .

[37]  C. W. Coffmann,et al.  Functional properties and amino acid content of a protein isolate from mung bean flour , 2007 .

[38]  I. M. Demiate,et al.  Caracterização físico-química de okara e aplicação em pães do tipo francês , 2006 .

[39]  Cristina Ratti,et al.  Hot air and freeze-drying of high-value foods : a review , 2001 .

[40]  S. Moritaka,et al.  Whipping and Emulsifying Properties of Soybean Products , 1972 .

[41]  Ashwani Kumar,et al.  Effect of drying techniques on drying behaviour and physico-chemical properties of marigold , 2018 .

[42]  D. Maisnam,et al.  Recent advances in conventional drying of foods , 2017 .

[43]  L. Kurozawa,et al.  Conversion/degradation of isoflavones and color alterations during the drying of okara , 2017 .

[44]  N. Handayani,et al.  Swelling Power and Water Solubility of Cassava and Sweet Potatoes Flour , 2015 .

[45]  S. Chandra Assessment of functional properties of different flours , 2013 .

[46]  A. García-Lafuente,et al.  Content and Profile of Isoflavones in Soy-Based Foods as a Function of the Production Process , 2011 .

[47]  Siaw Kiang Chou,et al.  New Hybrid Drying Technologies , 2005 .