Uniqueness in Weighted Lebesgue Spaces for an Elliptic Equation with Drift on Manifolds

[1]  Giulia Meglioli,et al.  Uniqueness for fractional parabolic and elliptic equations with drift , 2022, Communications on Pure and Applied Analysis.

[2]  F. Punzo,et al.  Distance from submanifolds with boundary and applications to Poincaré inequalities and to elliptic and parabolic problems , 2019, Journal of Differential Equations.

[3]  F. Punzo Integral conditions for uniqueness of solutions to degenerate parabolic equations , 2019, Journal of Differential Equations.

[4]  M. Rigoli,et al.  Maximum Principles and Geometric Applications , 2016 .

[5]  E. Valdinoci,et al.  Prescribed conditions at infinity for fractional parabolic and elliptic equations with unbounded coefficients , 2015, 1504.06265.

[6]  F. Punzo Uniqueness for the heat equation in Riemannian manifolds , 2015 .

[7]  F. Punzo Uniqueness of solutions to degenerate parabolic and elliptic equations in weighted Lebesgue spaces , 2013 .

[8]  E. Valdinoci,et al.  Uniqueness in weighted Lebesgue spaces for a class of fractional parabolic and elliptic equations , 2013, 1306.5071.

[9]  A. Tesei,et al.  Uniqueness of solutions to degenerate elliptic problems with unbounded coefficients , 2009 .

[10]  M. Pozio,et al.  Criteria for well-posedness of degenerate elliptic and parabolic problems , 2008 .

[11]  S. Kamin,et al.  Admissible conditions for parabolic equations degenerating at infinity , 2008 .

[12]  M. Pozio,et al.  On the uniqueness of bounded solutions to singular parabolic problems , 2005 .

[13]  Alexander Grigor'yan,et al.  Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds , 1999 .

[14]  D. Aronson Uniqueness of solutions of the Cauchy problem for parabolic equations*1 , 1966 .

[15]  A. S. Kalashnikov,et al.  LINEAR EQUATIONS OF THE SECOND ORDER OF PARABOLIC TYPE , 1962 .

[16]  Alberto Setti,et al.  Global divergence theorems in nonlinear PDEs and geometry , 2014, Ensaios Matemáticos.

[17]  S. Kamin,et al.  Uniqueness of solutions of the Cauchy problem for parabolic equations degenerating at infinity , 2000 .

[18]  Robert Everist Greene,et al.  Function theory on manifolds which possess a pole , 1979 .

[19]  I. Holopainen Riemannian Geometry , 1927, Nature.