Potential Role of miRNAs as Theranostic Biomarkers of Epilepsy

[1]  BioCarta , 2020, Definitions.

[2]  Hong Lu,et al.  MicroRNA‐132 attenuates LPS‐induced inflammatory injury by targeting TRAF6 in neuronal cell line HT‐22 , 2018, Journal of cellular biochemistry.

[3]  Feng Tian,et al.  MiR‐138/SIRT1 axis is implicated in impaired learning and memory abilities of cerebral ischemia/reperfusion injured rats , 2018, Experimental cell research.

[4]  B. Zhao,et al.  Astragalus polysaccharide protects hypoxia-induced injury by up-regulation of miR-138 in rat neural stem cells. , 2018, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[5]  Zhining Fan,et al.  Long non-coding RNA MIAT promotes growth and metastasis of colorectal cancer cells through regulation of miR-132/Derlin-1 pathway , 2018, Cancer Cell International.

[6]  Chao Ma,et al.  The role of the microRNA-146a/complement factor H/interleukin-1β-mediated inflammatory loop circuit in the perpetuate inflammation of chronic temporal lobe epilepsy , 2018, Disease Models & Mechanisms.

[7]  N. Rezaei,et al.  MicroRNA in Alzheimer’s disease revisited: implications for major neuropathological mechanisms , 2018, Reviews in the neurosciences.

[8]  Lili Sun,et al.  Resveratrol Improves Endothelial Progenitor Cell Function through miR-138 by Targeting Focal Adhesion Kinase (FAK) and Promotes Thrombus Resolution In Vivo , 2018, Medical science monitor : international medical journal of experimental and clinical research.

[9]  Changlong Li,et al.  Endothelial microparticles-mediated transfer of microRNA-19b promotes atherosclerosis via activating perivascular adipose tissue inflammation in apoE-/- mice. , 2018, Biochemical and biophysical research communications.

[10]  R. Dingledine,et al.  Commonalities in epileptogenic processes from different acute brain insults: Do they translate? , 2018, Epilepsia.

[11]  Yihong Ma The Challenge of microRNA as a Biomarker of Epilepsy , 2017, Current neuropharmacology.

[12]  D. Henshall,et al.  microRNAs in the pathophysiology of epilepsy , 2017, Neuroscience Letters.

[13]  J. Ji,et al.  PD149163 induces hypothermia to protect against brain injury in acute cerebral ischemic rats. , 2017, Journal of pharmacological sciences.

[14]  M. Hung,et al.  Nanoparticle Delivery of miR-34a Eradicates Long-term-cultured Breast Cancer Stem Cells via Targeting C22ORF28 Directly , 2017, Theranostics.

[15]  J. D. Mills,et al.  Standardization procedure for plasma biomarker analysis in rat models of epileptogenesis: Focus on circulating microRNAs , 2017, Epilepsia.

[16]  J. D. Mills,et al.  Systematic review and meta-analysis of differentially expressed miRNAs in experimental and human temporal lobe epilepsy , 2017, Scientific Reports.

[17]  M. Brázdil,et al.  MicroRNA and mesial temporal lobe epilepsy with hippocampal sclerosis: Whole miRNome profiling of human hippocampus , 2017, Epilepsia.

[18]  Yinghui Chen,et al.  Pathophysiology and Clinical Utility of Non-coding RNAs in Epilepsy , 2017, Front. Mol. Neurosci..

[19]  Wei Zhao,et al.  Simvastatin ameliorate memory deficits and inflammation in clinical and mouse model of Alzheimer's disease via modulating the expression of miR-106b. , 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[20]  W. Le,et al.  Tiny But Mighty: Promising Roles of MicroRNAs in the Diagnosis and Treatment of Parkinson’s Disease , 2017, Neuroscience Bulletin.

[21]  A. Papavassiliou,et al.  A step-by-step microRNA guide to cancer development and metastasis , 2017, Cellular Oncology.

[22]  Bin Gu,et al.  Models and detection of spontaneous recurrent seizures in laboratory rodents , 2017, Zoological research.

[23]  Zhen Xia,et al.  Genetic and epigenetic mechanisms of epilepsy: a review , 2017, Neuropsychiatric disease and treatment.

[24]  Donncha F. O’Brien,et al.  Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus , 2017, Scientific Reports.

[25]  D. Bartel,et al.  Widespread Influence of 3′-End Structures on Mammalian mRNA Processing and Stability , 2017, Cell.

[26]  H. Horn,et al.  Heterogeneous contribution of microdeletions in the development of common generalised and focal epilepsies , 2017, Journal of Medical Genetics.

[27]  Sekyung Oh,et al.  Exogenous miRNA-146a Enhances the Therapeutic Efficacy of Human Mesenchymal Stem Cells by Increasing Vascular Endothelial Growth Factor Secretion in the Ischemia/Reperfusion-Injured Heart , 2017, Journal of Vascular Research.

[28]  R. Secolin,et al.  MicroRNA hsa-miR-134 is a circulating biomarker for mesial temporal lobe epilepsy , 2017, PloS one.

[29]  J. H. Cross,et al.  Instruction manual for the ILAE 2017 operational classification of seizure types , 2017, Epilepsia.

[30]  Edouard Hirsch,et al.  ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology , 2017, Epilepsia.

[31]  J. H. Cross,et al.  Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology , 2017, Epilepsia.

[32]  Changwei Lin,et al.  Comparative study of joint bioinformatics analysis of underlying potential of ‘neurimmiR’, miR-212-3P/miR-132-3P, being involved in epilepsy and its emerging role in human cancer , 2017, Oncotarget.

[33]  M. Zucchetti,et al.  Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy , 2017, Neurobiology of Disease.

[34]  Bin Yu,et al.  MiR-451 suppresses proliferation, migration and promotes apoptosis of the human osteosarcoma by targeting macrophage migration inhibitory factor. , 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[35]  K. Yin,et al.  MicroRNA-15a/16-1 Antagomir Ameliorates Ischemic Brain Injury in Experimental Stroke , 2017, Stroke.

[36]  Giancarlo Mauri,et al.  SpidermiR: An R/Bioconductor Package for Integrative Analysis with miRNA Data , 2017, International journal of molecular sciences.

[37]  Haihong Zhou,et al.  Intranasal Delivery of miR-146a Mimics Delayed Seizure Onset in the Lithium-Pilocarpine Mouse Model , 2017, Mediators of inflammation.

[38]  F. Meng,et al.  Altered microRNA profiles in plasma exosomes from mesial temporal lobe epilepsy with hippocampal sclerosis , 2016, Oncotarget.

[39]  E. Jimenez-Mateos,et al.  MicroRNAs in Neurodegenerative Diseases. , 2017, International review of cell and molecular biology.

[40]  D. Goldstein,et al.  MicroRNAs in epilepsy: pathophysiology and clinical utility , 2016, The Lancet Neurology.

[41]  Chao Wang,et al.  Modulation of miR-146a/complement factor H-mediated inflammatory responses in a rat model of temporal lobe epilepsy , 2016, Bioscience reports.

[42]  Wei Zhao,et al.  Elevated serum miR-106b and miR-146a in patients with focal and generalized epilepsy , 2016, Epilepsy Research.

[43]  D. Gerlich,et al.  MicroRNA‐34/449 controls mitotic spindle orientation during mammalian cortex development , 2016, The EMBO journal.

[44]  Giancarlo Mauri,et al.  How interacting pathways are regulated by miRNAs in breast cancer subtypes , 2016, BMC Bioinformatics.

[45]  S. Danzer,et al.  MicroRNA-Mediated Downregulation of the Potassium Channel Kv4.2 Contributes to Seizure Onset. , 2016, Cell reports.

[46]  A. Pfeifer,et al.  Differential expression of miR-184 in temporal lobe epilepsy patients with and without hippocampal sclerosis – Influence on microglial function , 2016, Scientific Reports.

[47]  R. Voskuyl,et al.  Multi-omics profile of the mouse dentate gyrus after kainic acid-induced status epilepticus , 2016, Scientific Data.

[48]  Zhuwen Yi,et al.  MicroRNA-34b mediates hippocampal astrocyte apoptosis in a rat model of recurrent seizures , 2016, BMC Neuroscience.

[49]  Y. E. Chen,et al.  Dual Anti-Inflammatory and Anti-Angiogenic Action of miR-15a in Diabetic Retinopathy , 2016, EBioMedicine.

[50]  P. Striano,et al.  Management of genetic epilepsies: From empirical treatment to precision medicine. , 2016, Pharmacological research.

[51]  Brett A. Becker,et al.  EpimiRBase: a comprehensive database of microRNA-epilepsy associations , 2016, Bioinform..

[52]  Z. Peng,et al.  Propofol inhibits proliferation and accelerates apoptosis of human gastric cancer cells by regulation of microRNA-451 and MMP-2 expression. , 2016, Genetics and molecular research : GMR.

[53]  Sofie Sølvsten Sørensen,et al.  miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia – an exploratory study , 2016, Translational Neurodegeneration.

[54]  Abigail R. Colson,et al.  Health and economic benefits of public financing of epilepsy treatment in India: An agent‐based simulation model , 2016, Epilepsia.

[55]  Henning Hermjakob,et al.  The Reactome pathway Knowledgebase , 2015, Nucleic acids research.

[56]  Hsien-Da Huang,et al.  miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database , 2015, Nucleic Acids Res..

[57]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[58]  E. Hovig,et al.  A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the Human microRNAome. , 2015, Annual review of genetics.

[59]  M. Knip,et al.  MicroRNAs in rheumatoid arthritis: altered expression and diagnostic potential. , 2015, Autoimmunity reviews.

[60]  C. Limatola,et al.  GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis , 2015, Neurobiology of Disease.

[61]  Xueqi Li,et al.  Circulating MicroRNA-146a and MicroRNA-21 Predict Left Ventricular Remodeling after ST-Elevation Myocardial Infarction , 2015, Cardiology.

[62]  R. Voskuyl,et al.  MicroRNA-124 and -137 cooperativity controls caspase-3 activity through BCL2L13 in hippocampal neural stem cells , 2015, Scientific Reports.

[63]  Gianluca Bontempi,et al.  Integrative Analysis with Monte Carlo Cross-Validation Reveals miRNAs Regulating Pathways Cross-Talk in Aggressive Breast Cancer , 2015, BioMed research international.

[64]  A. Constanti,et al.  Statins and epilepsy: preclinical studies, clinical trials and statin-anticonvulsant drug interactions. , 2015, Current drug targets.

[65]  C. Croce,et al.  A differentially expressed set of microRNAs in cerebro-spinal fluid (CSF) can diagnose CNS malignancies , 2015, Oncotarget.

[66]  Xiuping Liu,et al.  FOXP3 Controls an miR-146/NF-κB Negative Feedback Loop That Inhibits Apoptosis in Breast Cancer Cells. , 2015, Cancer research.

[67]  Y. Liu,et al.  Genome-wide circulating microRNA expression profiling indicates biomarkers for epilepsy , 2015, Scientific Reports.

[68]  Q. Geng,et al.  Effects of statin on circulating microRNAome and predicted function regulatory network in patients with unstable angina , 2015, BMC Medical Genomics.

[69]  K. Staley Molecular mechanisms of epilepsy , 2015, Nature Neuroscience.

[70]  M. Yi,et al.  MicroRNA-10b inhibition reduces E2F1-mediated transcription and miR-15/16 activity in glioblastoma , 2015, OncoTarget.

[71]  Yangjin Kim,et al.  Strategies of Eradicating Glioma Cells: A Multi-Scale Mathematical Model with MiR-451-AMPK-mTOR Control , 2015, PloS one.

[72]  D. Henshall,et al.  microRNA and Epilepsy. , 2015, Advances in experimental medicine and biology.

[73]  Xin Huang,et al.  MicroRNA-146a and MicroRNA-146b Regulate Human Dendritic Cell Apoptosis and Cytokine Production by Targeting TRAF6 and IRAK1 Proteins* , 2014, The Journal of Biological Chemistry.

[74]  Roland Eils,et al.  circlize implements and enhances circular visualization in R , 2014, Bioinform..

[75]  H. Fröhlich,et al.  Different MicroRNA Profiles in Chronic Epilepsy Versus Acute Seizure Mouse Models , 2014, Journal of Molecular Neuroscience.

[76]  Michael R. Johnson,et al.  Describing the genetic architecture of epilepsy through heritability analysis , 2014, Brain : a journal of neurology.

[77]  Yangmei Chen,et al.  MicroRNA-132 silencing decreases the spontaneous recurrent seizures. , 2014, International journal of clinical and experimental medicine.

[78]  M. Thom Review: Hippocampal sclerosis in epilepsy: a neuropathology review , 2014, Neuropathology and applied neurobiology.

[79]  L. Tan,et al.  Genome-wide microRNA expression profiles in hippocampus of rats with chronic temporal lobe epilepsy , 2014, Scientific Reports.

[80]  J. H. Cross,et al.  ILAE Official Report: A practical clinical definition of epilepsy , 2014, Epilepsia.

[81]  E. Aronica,et al.  Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy , 2014, Neurobiology of Disease.

[82]  V. Kim,et al.  Regulation of microRNA biogenesis , 2014, Nature Reviews Molecular Cell Biology.

[83]  Hiroyuki Arai,et al.  MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer's disease. , 2014, Journal of Alzheimer's disease : JAD.

[84]  D. Henshall MicroRNAs in the pathophysiology and treatment of status epilepticus , 2013, Front. Mol. Neurosci..

[85]  L. Tan,et al.  Genome-Wide microRNA Profiling of Rat Hippocampus after Status Epilepticus Induced by Amygdala Stimulation Identifies Modulators of Neuronal Apoptosis , 2013, PloS one.

[86]  K. Dębski,et al.  Alterations in miRNA Levels in the Dentate Gyrus in Epileptic Rats , 2013, PloS one.

[87]  C. Hoogenraad,et al.  Developmental and Activity-Dependent miRNA Expression Profiling in Primary Hippocampal Neuron Cultures , 2013, PloS one.

[88]  E. Aronica,et al.  The dual role of TNF-α and its receptors in seizures , 2013, Experimental Neurology.

[89]  D. Spray,et al.  Transcriptome profiling of hippocampal CA1 after early‐life seizure‐induced preconditioning may elucidate new genetic therapies for epilepsy , 2013, The European journal of neuroscience.

[90]  H. Weiner,et al.  Circulating MicroRNAs as biomarkers for disease staging in multiple sclerosis , 2013, Annals of neurology.

[91]  E. Jimenez-Mateos,et al.  Epilepsy and microRNA , 2013, Neuroscience.

[92]  A. Quattrone,et al.  Relationship between genetic variant in pre-microRNA-146a and genetic predisposition to temporal lobe epilepsy: a case-control study. , 2013, Gene.

[93]  D. Johnston,et al.  Ion channels in genetic and acquired forms of epilepsy , 2013, The Journal of physiology.

[94]  R. Stallings,et al.  Expression profiling the microRNA response to epileptic preconditioning identifies miR-184 as a modulator of seizure-induced neuronal death , 2012, Experimental Neurology.

[95]  Bo Xiao,et al.  MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus , 2012, BMC Neuroscience.

[96]  Donncha F. O’Brien,et al.  Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects , 2012, Nature Medicine.

[97]  A. A. Kan,et al.  Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response , 2012, Cellular and Molecular Life Sciences.

[98]  T. Sano,et al.  MicroRNA-34a upregulation during seizure-induced neuronal death , 2012, Cell Death and Disease.

[99]  L. Goff,et al.  Expression profiling of synaptic microRNAs from the adult rat brain identifies regional differences and seizure-induced dynamic modulation , 2012, Brain Research.

[100]  Fei Chen,et al.  Effect of microRNA‐34a in cell cycle, differentiation, and apoptosis: A review , 2012, Journal of biochemical and molecular toxicology.

[101]  R. Stallings,et al.  miRNA Expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132. , 2011, The American journal of pathology.

[102]  Norbert Gretz,et al.  miRWalk - Database: Prediction of possible miRNA binding sites by "walking" the genes of three genomes , 2011, J. Biomed. Informatics.

[103]  Wolfgang Löscher,et al.  Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs , 2011, Seizure.

[104]  Yan Cheng,et al.  Temporal lobe epilepsy induces differential expression of hippocampal miRNAs including let-7e and miR-23a/b , 2011, Brain Research.

[105]  J. French,et al.  Interleukin-1β Biosynthesis Inhibition Reduces Acute Seizures and Drug Resistant Chronic Epileptic Activity in Mice , 2011, Neurotherapeutics.

[106]  Li Feng,et al.  Expression profile of microRNAs in rat hippocampus following lithium–pilocarpine-induced status epilepticus , 2011, Neuroscience Letters.

[107]  Michael A. Rogawski,et al.  Molecular targets for antiepileptic drug development , 2011, Neurotherapeutics.

[108]  Hsien-Da Huang,et al.  miRTar: an integrated system for identifying miRNA-target interactions in human , 2011, BMC Bioinformatics.

[109]  J. C. Baayen,et al.  Expression pattern of miR‐146a, an inflammation‐associated microRNA, in experimental and human temporal lobe epilepsy , 2010, The European journal of neuroscience.

[110]  F. Sharp,et al.  Brain and Blood microRNA Expression Profiling of Ischemic Stroke, Intracerebral Hemorrhage, and Kainate Seizures , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[111]  Kedar S Vaidya,et al.  Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. , 2009, Cancer research.

[112]  David B Jackson,et al.  Serum-based microRNAs: Are we blinded by potential? , 2009, Proceedings of the National Academy of Sciences.

[113]  E. Bedel Relationship between , 2009 .

[114]  Qizhi Yao,et al.  MicroRNAs: Control and Loss of Control in Human Physiology and Disease , 2009, World Journal of Surgery.

[115]  M. Lindsay,et al.  Role of miRNA-146a in the regulation of the innate immune response and cancer. , 2008, Biochemical Society transactions.

[116]  T. Bártfai,et al.  A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1beta. , 2008, Brain : a journal of neurology.

[117]  A. Roses,et al.  Identification of miRNA Changes in Alzheimer's Disease Brain and CSF Yields Putative Biomarkers and Insights into Disease Pathways , 2008 .

[118]  P. Greengard,et al.  Cerebellar neurodegeneration in the absence of microRNAs , 2007, The Journal of experimental medicine.

[119]  Peng Jin,et al.  Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. , 2007, Human molecular genetics.

[120]  Wen-Hsiung Li,et al.  Human polymorphism at microRNAs and microRNA target sites , 2007, Proceedings of the National Academy of Sciences.

[121]  K. Kosik The neuronal microRNA system , 2006, Nature Reviews Neuroscience.

[122]  D. Baltimore,et al.  NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses , 2006, Proceedings of the National Academy of Sciences.

[123]  A. Pitkänen,et al.  Caspase 6 expression in the rat hippocampus during epileptogenesis and epilepsy , 2005, Neuroscience.

[124]  J. Kapur Role of Neuronal Loss in the Pathogenesis of Recurrent Spontaneous Seizures , 2003, Epilepsy currents.

[125]  Y. Benjamini,et al.  Controlling the false discovery rate in behavior genetics research , 2001, Behavioural Brain Research.

[126]  Gregory L. Holmes,et al.  Handbook of Epilepsy , 1997 .