Autothermal reforming of low-sulfur diesel over bimetallic RhPt supported on Al2O3, CeO2–ZrO2, SiO2 and TiO2

The objective of this paper is to study and clarify the role of selected supports (both reducible and non-reducible) on the activity, selectivity and stability of RhPt-based catalyst for diesel ref ...

[1]  T. J. Truex,et al.  The Role of Ceria in Three-Way Catalysts , 1991 .

[2]  G. Graham,et al.  Incorporation of La3+ into a Rh/γ-Al2O3 catalyst , 1992 .

[3]  J. Schwank,et al.  Carbon deposited on Ni/CeZrO isooctane autothermal reforming catalysts , 2007 .

[4]  N. Takahashi,et al.  Reversible changes in the Pt oxidation state and nanostructure on a ceria-based supported Pt , 2009 .

[5]  P. V. Ashrit,et al.  Study of Anatase to Rutile Phase Transition in Nanocrystalline Titania Films , 2002 .

[6]  John P. Baltrus,et al.  Characterization of coke deposited on Pt/alumina catalyst during reforming of liquid hydrocarbons , 2005 .

[7]  L. Schmidt,et al.  Chemical and geometric effects of Ce and washcoat addition on catalytic partial oxidation of CH4 on Rh probed by spatially resolved measurements , 2008 .

[8]  T. Kaun,et al.  Characterization of kilowatt-scale autothermal reformer for production of hydrogen from heavy hydrocarbons , 2004 .

[9]  Xanthias Karatzas,et al.  Microemulsion and incipient wetness prepared Rh-based catalyst for diesel reforming , 2011 .

[10]  M. Nilsson,et al.  Assessing the adaptability to varying fuel supply of an autothermal reformer , 2008 .

[11]  Theodore R. Krause,et al.  Role of the oxide support on the performance of Rh catalysts for the autothermal reforming of gasoline and gasoline surrogates to hydrogen , 2006 .

[12]  M. Sayagués,et al.  Photoactivity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase , 2005 .

[13]  R. K. Toghiani,et al.  Partial oxidation of methane to H2 and CO over Rh/SiO2 and Ru/SiO2 catalysts , 2004 .

[14]  G. E. Voecks,et al.  Autothermal reforming of aliphatic and aromatic hydrocarbon liquids , 1983 .

[15]  Urmila M. Diwekar,et al.  Life cycle assessment of fuel cell-based APUs , 2005 .

[16]  H. Beyer,et al.  Decomposition of nitrous oxide by rhodium catalysts: Effect of rhodium particle size and metal oxide support , 2011 .

[17]  L. Schmidt,et al.  Comparison of monolith-supported metals for the direct oxidation of methane to syngas , 1994 .

[18]  J. Hill,et al.  Sol–gel synthesis of Pt/Al2O3 catalysts: Effect of Pt precursor and calcination procedure on Pt dispersion , 2006 .

[19]  A. Proctor,et al.  Influence of lanthanum on the surface structure and CO hydrogenation activity of supported cobalt catalysts , 1989 .

[20]  M. Harada,et al.  Hydrogen production by autothermal reforming of kerosene over MgAlOx-supported Rh catalysts , 2009 .

[21]  L. Schmidt,et al.  Catalytic partial oxidation of methane on rhodium and platinum: Spatial profiles at elevated pressure , 2008 .

[22]  G. Bond,et al.  Catalysis, science and technology , 1983 .

[23]  A. B. Stiles Catalyst Supports and Supported Catalysts: Theoretical and Applied Concepts , 1987 .

[24]  R. Gorte,et al.  Evidence for Low-Temperature Oxygen Migration from Ceria to Rh , 1993 .

[25]  J. Fierro,et al.  Study of the surface and redox properties of ceria–zirconia oxides , 2008 .

[26]  E. Ruckenstein,et al.  Effect of Support on Partial Oxidation of Methane to Synthesis Gas over Supported Rhodium Catalysts , 1999 .

[27]  M. Hatanaka,et al.  Ideal Pt loading for a Pt/CeO2-based catalyst stabilized by a Pt–O–Ce bond , 2010 .

[28]  Chemical reconstruction and catalysis of metal and bimetallic surfaces , 1996 .

[29]  Manfred Baerns,et al.  Primary reaction steps and active surface sites in the rhodium-catalyzed partial oxidation of methane to CO and H2 , 1996 .

[30]  E. Ruckenstein,et al.  Partial Oxidation of Methane to Synthesis Gas over MgO- and SiO2-Supported Rhodium Catalysts , 1999 .

[31]  T. Fujitani,et al.  Catalytic performance of rhodium supported on ceria–zirconia mixed oxides for reduction of NO by propene , 2008 .

[32]  Sven Järås,et al.  Partial oxidation of methane over rhodium catalysts for power generation applications , 2005 .

[33]  S. Colonna,et al.  XAS characterization and CO oxidation on δ-alumina supported La, Mn, Co and Fe oxides , 2004 .

[34]  James Thomas Richardson,et al.  Principles of Catalyst Development , 1989 .

[35]  Gbmm Guy Marin,et al.  The Reaction Mechanism of the Partial Oxidation of Methane to Synthesis Gas: A Transient Kinetic Study over Rhodium and a Comparison with Platinum , 1997 .

[36]  G. Saracco,et al.  Concept Study on ATR and SR Fuel Processors for Liquid Hydrocarbons , 2006 .

[37]  Marianna Kemell,et al.  Zirconia-supported bimetallic RhPt catalysts: Characterization and testing in autothermal reforming of simulated gasoline , 2008 .

[38]  J. Banfield,et al.  Thermodynamic analysis of phase stability of nanocrystalline titania , 1998 .

[39]  G. Eigenberger,et al.  Isothermal kinetic measurements for hydrogen production from hydrocarbon fuels using a novel kinetic reactor concept , 2002 .

[40]  Y. Matsumura,et al.  Effect of support on catalytic properties of Rh catalysts for steam reforming of 2-propanol , 2003 .

[41]  Yun Wang,et al.  A review of polymer electrolyte membrane fuel cells: Technology, applications,and needs on fundamental research , 2011 .

[42]  M. Valden,et al.  Rh oxide reducibility and catalytic activity of model Pt–Rh catalysts , 2005 .

[43]  A. Burggraaf,et al.  Zirconia as a support for catalysts: Evolution of the texture and structure on calcination in air , 1990 .

[44]  R. Mccabe,et al.  The effect of alumina phase structure on the dispersion of rhodium/alumina catalysts , 1995 .

[45]  Y. Sung,et al.  Methanol electro-oxidation and direct methanol fuel cell using Pt/Rh and Pt/Ru/Rh alloy catalysts , 2004 .

[46]  A. Krause,et al.  Temperature-programmed oxidation of coked noble metal catalysts after autothermal reforming of n-hexadecane , 2010 .

[47]  Xanthias Karatzas,et al.  Zone-coated Rh-based monolithic catalyst for autothermal reforming of diesel , 2011 .

[48]  Sergio Rojas,et al.  Effect of Ce-doping on Rh/ZrO2 catalysts for partial oxidation of methane , 2007 .

[49]  Mauro Graziani,et al.  Rh-Loaded CeO2-ZrO2 Solid-Solutions as Highly Efficient Oxygen Exchangers: Dependence of the Reduction Behavior and the Oxygen Storage Capacity on the Structural-Properties , 1995 .

[50]  D. Creaser,et al.  Hydrogen generation from n-tetradecane, low-sulfur and Fischer-Tropsch diesel over Rh supported on alumina doped with ceria/lanthana , 2011 .

[51]  G. Djéga-Mariadassou,et al.  Ceria–zirconia-supported rhodium catalyst for NOx reduction from coal combustion flue gases , 2009 .

[52]  C. Linsmeier,et al.  Strong metal–support interactions on rhodium model catalysts , 2011 .

[53]  H. Wan,et al.  Effect of Rh loading on the performance of Rh/Al2O3 for methane partial oxidation to synthesis gas , 2008 .

[54]  P. Panagiotopoulou,et al.  Particle size effects on the reducibility of titanium dioxide and its relation to the water-gas shift activity of Pt/TiO2 catalysts , 2006 .

[55]  F. B. Noronha,et al.  The effect of ceria content on the properties of Pd/CeO2/Al2O3 catalysts for steam reforming of methane , 2007 .

[56]  Sara Eriksson,et al.  Development of catalysts for natural gas-fired gas turbine combustors , 2006 .

[57]  D. D. Beck,et al.  XAFS Characterization of Rh/Al2O3 After Treatment in High-Temperature Oxidizing Environments , 1993 .

[58]  H. Wise,et al.  Deactivation and Poisoning of Catalysts , 1985 .

[59]  V. Henrich,et al.  SMSI in Rh/TiO2 model catalysts: Evidence for oxide migration , 1984 .

[60]  Anant D Vyas,et al.  Analysis of technology options to reduce the fuel consumption of idling trucks , 2000 .

[61]  Jens R. Rostrup-Nielsen,et al.  Steam reforming of liquid hydrocarbons , 1998 .

[62]  Heon Jung,et al.  Partial oxidation of n-hexadecane into synthesis gas over a Pd-based metal monolith catalyst for an auxiliary power unit (APU) system of SOFC , 2011 .

[63]  Sangho Yoon,et al.  Performance improvement of diesel autothermal reformer by applying ultrasonic injector for effective fuel delivery , 2007 .

[64]  Daniel Sperling,et al.  Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks , 2002 .

[65]  E. Ruckenstein,et al.  Temperature-programmed reduction and XRD studies of the interactions in supported rhodium catalysts and their effect on partial oxidation of methane to synthesis gas , 2000 .

[66]  Sangho Yoon,et al.  Effects of ethylene on carbon formation in diesel autothermal reforming , 2008 .

[67]  C. Au,et al.  Mechanistic studies of methane partial oxidation to syngas over SiO2-Supported rhodium catalysts , 1997 .

[68]  Alexis T. Bell,et al.  Electron microscopy study of the interactions of rhodium with titania , 1985 .

[69]  Daniel J. Haynes,et al.  Catalytic partial oxidation of n-tetradecane using pyrochlores: Effect of Rh and Sr substitution , 2008 .

[70]  J. Conesa,et al.  Effect of oxidized rhodium on oxygen adsorption on cerium oxide , 1992 .

[71]  Theodore R. Krause,et al.  Bimetallic Ni-Rh catalysts with low amounts of Rh for the steam and autothermal reforming of n-butane for fuel cell applications , 2010 .

[72]  Marcello Contestabile,et al.  Analysis of the market for diesel PEM fuel cell auxiliary power units onboard long-haul trucks and of its implications for the large-scale adoption of PEM FCs , 2010 .

[73]  A. Datye,et al.  Direct observation of the surfaces of small metal crystallites: rhodium supported on TiO2 , 1988 .

[74]  M. Ferrandon,et al.  Hydrothermal Stabilization by Lanthanum of Mixed Metal Oxides and Noble Metal Catalysts for Volatile Organic Compound Removal , 2001 .

[75]  J. Fierro,et al.  The effect of CeO2 on the surface and catalytic properties of Pt/CeO2–ZrO2 catalysts for methane dry reforming , 2009 .

[76]  Paolo Agnolucci,et al.  Prospects of fuel cell auxiliary power units in the civil markets , 2007 .

[77]  Christie-Joy Brodrick,et al.  Analysis of potential fuel consumption and emissions reductions from fuel cell auxiliary power units (APUs) in long-haul trucks , 2007 .

[78]  H. Schaper,et al.  The influence of lanthanum oxide on the thermal stability of gamma alumina catalyst supports , 1983 .

[79]  Chao’en Li,et al.  Carbon oxidation kinetics from evolved carbon oxide analysis during temperature-programmed oxidation , 2001 .

[80]  Marita Nilsson Hydrogen Generation for Fuel Cells in Auxiliary Power Systems , 2009 .

[81]  S. C. Fung,et al.  Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide , 1978 .

[82]  E. Ruckenstein,et al.  Partial oxidation of methane to synthesis gas over MgO-supported Rh catalysts: the effect of precursor of MgO , 2000 .

[83]  Jianli Hu,et al.  An overview of hydrogen production technologies , 2009 .

[84]  J. Bueno,et al.  Effect of CeO2 loading on the surface and catalytic behaviors of CeO2-Al2O3-supported Pt catalysts , 2003 .

[85]  R. Dictor,et al.  Influence of ceria on alumina-supported rhodium: Observations of rhodium morphology made using FTIR spectroscopy , 1989 .

[86]  W. Westwood,et al.  Formation of PtO films by reactive sputtering , 1974 .

[87]  M. Larrubia,et al.  Characterization of alumina-supported Pt, Ni and PtNi alloy catalysts for the dry reforming of methane , 2010 .

[88]  R. Berry Study of multilayer surface oxidation of platinum by electrical resistance technique , 1978 .