Density functionals for the Yukawa electron-electron interaction

mShort-range nonclassical electron-electron interaction is described by a density functional in a scheme that allows multideterminant wave functions. The parameter that determines the coupling with the configuration-interaction-type calculations can be chosen in a controlled manner. Results are presented for the He and the Be series using a Yukawa-type interaction. 0 1995 John Wiley & Sons, Inc.

[1]  J. D. Morgan,et al.  Erratum: Rates of convergence of the partial-wave expansions of atomic correlation energies [J. Chem. Phys. 96, 4484 (1992)] , 1992 .

[2]  B. Roos,et al.  Dynamic correlation for MCSCF wave functions: An effective potential method , 1987 .

[3]  J. Percus The role of model systems in the few‐body reduction of the N‐fermion problem , 1978 .

[4]  San-Fabián,et al.  Density-functional formalism and the two-body problem. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[5]  Kohn,et al.  Theory of inhomogeneous quantum systems. IV. Variational calculations of metal surfaces. , 1985, Physical review. B, Condensed matter.

[6]  John P. Perdew,et al.  The exchange-correlation energy of a metallic surface , 1975 .

[7]  P. Knowles,et al.  An efficient internally contracted multiconfiguration–reference configuration interaction method , 1988 .

[8]  A. Savin Correlation contributions from density functionals , 1991 .

[9]  B. Lundqvist,et al.  Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism , 1976 .

[10]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[11]  M. Levy Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[12]  John P. Perdew,et al.  Exchange-correlation energy of a metallic surface: Wave-vector analysis , 1977 .

[13]  P. Knowles,et al.  An efficient second-order MC SCF method for long configuration expansions , 1985 .

[14]  R. Mcweeny,et al.  On the basis of orbital theories , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[16]  Peter R. Taylor,et al.  General contraction of Gaussian basis sets. I. Atomic natural orbitals for first‐ and second‐row atoms , 1987 .

[17]  R. Dreizler,et al.  Density Functional Methods In Physics , 1985 .

[18]  Werner Kutzelnigg,et al.  Rates of convergence of the partial‐wave expansions of atomic correlation energies , 1992 .

[19]  R. Fantoni,et al.  Electron momentum spectroscopy of trisubstituted amines: The valence shell orbitals of triethylamine , 1987 .

[20]  Hermann Stoll,et al.  Pseudopotential calculations for alkaline-earth atoms , 1985 .

[21]  C. Pekeris,et al.  Logarithmic Terms in the Wave Functions of the Ground State of Two-Electron Atoms , 1966 .

[22]  Theory of Many-Particle Systems , 1989 .

[23]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[24]  Hermann Stoll,et al.  Pseudopotentials for main group elements (IIIa through VIIa) , 1988 .

[25]  William H. Press,et al.  Numerical recipes , 1990 .

[26]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[27]  Görling,et al.  Correlation-energy functional and its high-density limit obtained from a coupling-constant perturbation expansion. , 1993, Physical review. B, Condensed matter.

[28]  Fritsche Generalized Kohn-Sham theory for electronic excitations in realistic systems. , 1986, Physical review. B, Condensed matter.

[29]  A. Savin,et al.  Density Functionals for Correlation Energies of Atoms and Molecules , 1985 .

[30]  R. Colle,et al.  Approximate calculation of the correlation energy for the closed and open shells , 1979 .

[31]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[32]  Arvi Rauk,et al.  On the calculation of multiplet energies by the hartree-fock-slater method , 1977 .