Physical-Layer Secrecy for OFDM Transmissions Over Fading Channels

This paper considers the information theoretic secrecy rates that are achievable by an orthogonal frequency-division multiplexing (OFDM) transmitter/receiver pair in the presence of an eavesdropper that might either use an OFDM structure or choose a more complex receiver architecture. The analysis is made possible by modeling the system as a particular instance of a high dimensional multiple-input multiple-output wiretap channel. The secrecy capacity is formulated as a maximization problem under a trace constraint, and simple expressions are given for its high signal-to-noise (SNR) limit. The low rate limit of the secrecy outage probability is also evaluated under a fading channel model. As for the finite SNR case, the secrecy rates that can be achieved with particular inputs are considered. Numerical results are provided under a Rayleigh fading channel model and under dependence of the main and eavesdropper channels. The secrecy loss due to the OFDM structure constraints, and the information gain for an eavesdropper that uses a more complex receiver, are also considered.

[1]  Shlomo Shamai,et al.  Multiple-Input Multiple-Output Gaussian Broadcast Channels With Confidential Messages , 2009, IEEE Transactions on Information Theory.

[2]  Mustafa Cenk Gursoy Secure communication in the low-SNR regime: A Characterization of the energy-secrecy tradeoff , 2009, 2009 IEEE International Symposium on Information Theory.

[3]  Shlomo Shamai,et al.  Secure Communication Over Fading Channels , 2007, IEEE Transactions on Information Theory.

[4]  Roy D. Yates,et al.  Secrecy capacity of independent parallel channels , 2009 .

[5]  Zhi Ding,et al.  On the Secrecy Rate of Multi-Antenna Wiretap Channel under Finite-Alphabet Input , 2011, IEEE Communications Letters.

[6]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[7]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[8]  Dov Wulich,et al.  Securing OFDM over Wireless Time-Varying Channels Using Subcarrier Overloading with Joint Signal Constellations , 2009, EURASIP J. Wirel. Commun. Netw..

[9]  R. V. Churchill,et al.  Lectures on Fourier Integrals , 1959 .

[10]  Patricio Parada,et al.  On convergence properties of Shannon entropy , 2007, Probl. Inf. Transm..

[11]  Matthew R. McKay,et al.  Rethinking the Secrecy Outage Formulation: A Secure Transmission Design Perspective , 2011, IEEE Communications Letters.

[12]  John Hamilton,et al.  An elliptical cryptographic algorithm for rf wireless devices , 2007, 2007 Winter Simulation Conference.

[13]  Georgios B. Giannakis,et al.  Cyclic prefixing or zero padding for wireless multicarrier transmissions? , 2002, IEEE Trans. Commun..

[14]  Miguel R. D. Rodrigues,et al.  Secrecy Capacity of Wireless Channels , 2006, 2006 IEEE International Symposium on Information Theory.

[15]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[16]  G. David Forney,et al.  Modulation and Coding for Linear Gaussian Channels , 1998, IEEE Trans. Inf. Theory.

[17]  Wei-Jian Lin,et al.  An integrating channel coding and cryptography design for OFDM based WLANs , 2009, 2009 IEEE 13th International Symposium on Consumer Electronics.

[18]  D. Reilly,et al.  Noise-enhanced encryption for physical layer security in an OFDM radio , 2009, 2009 IEEE Radio and Wireless Symposium.

[19]  Shlomo Shamai,et al.  Secured Communication over Frequency-Selective Fading Channels: A Practical Vandermonde Precoding , 2009, EURASIP J. Wirel. Commun. Netw..

[20]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[21]  Anelia Somekh-Baruch,et al.  On Gaussian wiretap channels with M-PAM inputs , 2010, 2010 European Wireless Conference (EW).

[22]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[23]  Eduard A. Jorswieck,et al.  Resource allocation for the wire-tap multi-carrier broadcast channel , 2008, 2008 International Conference on Telecommunications.

[24]  Shlomo Shamai,et al.  A Note on the Secrecy Capacity of the Multiple-Antenna Wiretap Channel , 2007, IEEE Transactions on Information Theory.

[25]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas I: The MISOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[26]  Shlomo Shamai,et al.  An MMSE Approach to the Secrecy Capacity of the MIMO Gaussian Wiretap Channel , 2009, 2009 IEEE International Symposium on Information Theory.

[27]  Miguel R. D. Rodrigues,et al.  Filter Design with Secrecy Constraints: The Degraded Parallel Gaussian Wiretap Channel , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[28]  Ami Wiesel,et al.  On the Gaussian MIMO Wiretap Channel , 2007, 2007 IEEE International Symposium on Information Theory.

[29]  James L. Massey,et al.  Proper complex random processes with applications to information theory , 1993, IEEE Trans. Inf. Theory.