Observing white dwarfs orbiting massive black holes in the gravitational wave and electro-magnetic window
暂无分享,去创建一个
A. Vecchio | M. Eracleous | A. Vecchio | M. Eracleous | A. Sesana | S. Sigurdsson | A. Sesana | S. Sigurdsson | A. Vecchio
[1] J. Gair,et al. A constrained Metropolis–Hastings search for EMRIs in the Mock LISA Data Challenge 1B , 2008, 0804.3322.
[2] P. Bender,et al. Gradual approach to coalescence for compact stars orbiting massive black holes , 1995 .
[3] S. Sabatini,et al. The dwarf LSB galaxy population of the Virgo cluster - I. The faint-end slope of the luminosity function , 2003, astro-ph/0301585.
[4] A. J. Barth,et al. TO APPEAR IN THE ASTROPHYSICAL JOURNAL LETTERS Preprint typeset using LATEX style emulateapj v. 6/22/04 DWARF SEYFERT 1 NUCLEI AND THE LOW-MASS END OF THE MBH −σ RELATION , 2004 .
[5] N. Cornish. Detection strategies for extreme mass ratio inspirals , 2008, 0804.3323.
[6] P. C. Peters. Gravitational Radiation and the Motion of Two Point Masses , 1964 .
[7] L. Althaus,et al. Mass distribution of DA white dwarfs in the first Data Release of the Sloan Digital Sky Survey , 2004, astro-ph/0404344.
[8] M. Rees,et al. Capture of stellar mass compact objects by massive black holes in galactic cusps , 1996, astro-ph/9608093.
[9] Angular resolution of the LISA gravitational wave detector , 1997, gr-qc/9703068.
[10] Measuring coalescing massive binary black holes with gravitational waves: The impact of spin-induced precession , 2006 .
[11] T. Metcalfe. White Dwarf Asteroseismology and the [TSUP]12[/TSUP]C(α, γ)[TSUP]16[/TSUP]O Rate , 2003 .
[12] N. Grevesse,et al. Abundances of the elements: Meteoritic and solar , 1989 .
[13] L. Ho,et al. Active Galactic Nuclei with Candidate Intermediate-Mass Black Holes , 2004, astro-ph/0404110.
[14] Z. Haiman,et al. Cosmological physics with black holes (and possibly white dwarfs) , 2008, 0803.3627.
[15] Donald W. Sweeney,et al. Project status of the 8.4-m LSST , 2004, SPIE Astronomical Telescopes + Instrumentation.
[16] Daniel E. Holz,et al. Using Gravitational-Wave Standard Sirens , 2005, astro-ph/0504616.
[17] Mergers of Black Hole-Neutron Star Binaries. I. Methods and First Results , 2007, astro-ph/0703599.
[18] D. Richstone,et al. The Cosmic Density of Massive Black Holes from Galaxy Velocity Dispersions , 2002, astro-ph/0210573.
[19] Clovis Hopman,et al. The Effect of Mass Segregation on Gravitational Wave Sources near Massive Black Holes , 2006 .
[20] T. Alexander,et al. Resonant Relaxation near a Massive Black Hole: The Stellar Distribution and Gravitational Wave Sources , 2006, astro-ph/0601161.
[21] T. Alexander. Stellar Relaxation Processes Near the Galactic Massive Black Hole , 2007, 0708.0688.
[22] R. Lang,et al. Localizing Coalescing Massive Black Hole Binaries with Gravitational Waves , 2007, 0710.3795.
[23] The LISA optimal sensitivity , 2002, gr-qc/0209039.
[24] Raul Ernesto Gonzalez,et al. The faint-end of the galaxy luminosity function in groups , 2005, astro-ph/0507144.
[25] E. Porter,et al. Effect of higher harmonic corrections on the detection of massive black hole binaries with LISA , 2008, 0804.0332.
[26] G. Ferland,et al. What heats the hot phase in active nuclei , 1987 .
[27] S. Whitcomb. Ground-based gravitational-wave detection: now and future , 2008 .
[28] M. Nauenberg,et al. ANALYTIC APPROXIMATIONS TO THE MASS--RADIUS RELATION AND ENERGY OF ZERO- TEMPERATURE STARS. , 1972 .
[29] On the search of electromagnetic cosmological counterparts to coalescences of massive black hole binaries , 2006, astro-ph/0605624.
[30] J. Mathews,et al. Gravitational radiation from point masses in a Keplerian orbit , 1963 .
[31] The faint end of the galaxy luminosity function , 2002, astro-ph/0205060.
[32] B. Schutz. Determining the Hubble constant from gravitational wave observations , 1986, Nature.
[33] A. Sintes,et al. LISA observations of supermassive black holes: Parameter estimation using full post-Newtonian inspiral waveforms , 2007, 0707.4434.
[34] Spin, accretion, and the cosmological growth of supermassive black holes , 2004, astro-ph/0411156.
[35] Oscar Straniero,et al. The Chemical Composition of White Dwarfs as a Test of Convective Efficiency during Core Helium Burning , 2002 .
[36] Curt Cutler,et al. LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.
[37] J. Schijf,et al. Geochimica et Cosmochimica Acta , 2008 .
[38] Z. Haiman,et al. Premerger Localization of Gravitational Wave Standard Sirens with LISA: Triggered Search for an Electromagnetic Counterpart , 2007, 0712.1144.
[39] P. Ivanov. On the formation rate of close binaries consisting of a super‐massive black hole and a white dwarf , 2001, astro-ph/0112317.
[40] Untangling the merger history of massive black holes with LISA , 2001, astro-ph/0108483.
[41] S. Tremaine,et al. Rates of tidal disruption of stars by massive central black holes , 1999, astro-ph/9902032.
[42] E. Phinney,et al. The Afterglow of Massive Black Hole Coalescence , 2004, astro-ph/0410343.
[43] K. Menou. Probing distant massive black holes with LISA , 2003, astro-ph/0301397.
[45] C. Broeck,et al. Higher signal harmonics, LISA's angular resolution, and dark energy , 2007, 0707.3920.
[46] Report on the second Mock LISA Data Challenge , 2007, 0711.2667.
[47] Z. Frei,et al. TO BE SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 6/22/04 FINDING THE ELECTROMAGNETIC COUNTERPARTS OF COSMOLOGICAL STANDARD SIRENS , 2005 .
[48] G. Ferland,et al. CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .
[50] M. Freitag. Monte Carlo cluster simulations to determine the rate of compact star inspiralling to a central galactic black hole , 2001 .