A hybrid biased random key genetic algorithm approach for the unit commitment problem

This work proposes a hybrid genetic algorithm (GA) to address the unit commitment (UC) problem. In the UC problem, the goal is to schedule a subset of a given group of electrical power generating units and also to determine their production output in order to meet energy demands at minimum cost. In addition, the solution must satisfy a set of technological and operational constraints. The algorithm developed is a hybrid biased random key genetic algorithm (HBRKGA). It uses random keys to encode the solutions and introduces bias both in the parent selection procedure and in the crossover strategy. To intensify the search close to good solutions, the GA is hybridized with local search. Tests have been performed on benchmark large-scale power systems. The computational results demonstrate that the HBRKGA is effective and efficient. In addition, it is also shown that it improves the solutions obtained by current state-of-the-art methodologies.

[1]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[2]  Alice E. Smith,et al.  A Seeded Memetic Algorithm for Large Unit Commitment Problems , 2002, J. Heuristics.

[3]  Sayeed Salam,et al.  Unit Commitment Solution Methods , 2007 .

[4]  Mauricio G. C. Resende,et al.  A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem , 2011, J. Comb. Optim..

[5]  Eiichi Tanaka,et al.  An Evolutionary Programming Solution to the Unit Commitment Problem , 1997 .

[6]  Reha Uzsoy,et al.  A genetic algorithm for a single product network design model with lead time and safety stock considerations , 2009, Eur. J. Oper. Res..

[7]  Claudio Gentile,et al.  Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints , 2006, Oper. Res..

[8]  Anastasios G. Bakirtzis,et al.  A genetic algorithm solution to the unit commitment problem , 1996 .

[9]  Mauricio G. C. Resende,et al.  A genetic algorithm for the resource constrained multi-project scheduling problem , 2008, Eur. J. Oper. Res..

[10]  Hong-Tzer Yang,et al.  A new thermal unit commitment approach using constraint logic programming , 1997 .

[11]  James C. Bean,et al.  Genetic Algorithms and Random Keys for Sequencing and Optimization , 1994, INFORMS J. Comput..

[12]  Wei Xiong,et al.  An Improved Particle Swarm Optimization Algorithm for Unit Commitment , 2008, 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA).

[13]  José Fernando Gonçalves,et al.  Heuristic solutions for general concave minimum cost network flow problems , 2007, Networks.

[14]  Chuanwen Jiang,et al.  A matrix real-coded genetic algorithm to the unit commitment problem , 2006 .

[15]  Panos M. Pardalos,et al.  Optimization in the Energy Industry , 2009 .

[16]  José Fernando Gonçalves,et al.  A multi-population hybrid biased random key genetic algorithm for hop-constrained trees in nonlinear cost flow networks , 2013, Optim. Lett..

[17]  C. Gentile,et al.  Tighter Approximated MILP Formulations for Unit Commitment Problems , 2009, IEEE Transactions on Power Systems.

[18]  Jonathan F. Bard,et al.  Short-Term Scheduling of Thermal-Electric Generators Using Lagrangian Relaxation , 1988, Oper. Res..

[19]  Ruiwei Jiang,et al.  Robust Unit Commitment With Wind Power and Pumped Storage Hydro , 2012, IEEE Transactions on Power Systems.

[20]  Risto Lahdelma,et al.  A variant of the dynamic programming algorithm for unit commitment of combined heat and power systems , 2008, Eur. J. Oper. Res..

[21]  Minqiang Li,et al.  A floating-point genetic algorithm for solving the unit commitment problem , 2007, Eur. J. Oper. Res..

[22]  D. Bertsekas,et al.  Solution of Large-Scale Optimal Unit Commitment Problems , 1982, IEEE Transactions on Power Apparatus and Systems.

[23]  Bala Venkatesh,et al.  Unit commitment - a fuzzy mixed integer Linear Programming solution , 2007 .

[24]  Mohd Wazir Mustafa,et al.  Structured genetic algorithm technique for unit commitment problem , 2009 .

[25]  D. P. Kothari,et al.  Optimal thermal generating unit commitment: a review , 1998 .

[26]  S. K. Goswami,et al.  Fuzzy and simulated annealing based dynamic programming for the unit commitment problem , 2009, Expert Syst. Appl..

[27]  Fernando A. C. C. Fontes,et al.  A Biased Random Key Genetic Algorithm Approach for Unit Commitment Problem , 2011, IJCCI.

[28]  B. Vahidi,et al.  A Solution to the Unit Commitment Problem Using Imperialistic Competition Algorithm , 2012, IEEE Transactions on Power Systems.

[29]  A. Turgeon Optimal scheduling of thermal generating units , 1978 .

[30]  N.P. Padhy,et al.  Unit commitment-a bibliographical survey , 2004, IEEE Transactions on Power Systems.

[31]  Yong-Kab Kim,et al.  Evaluation of Two Lagrangian Dual Optimization Algorithms for Large-Scale Unit Commitment Problems , 2012 .

[32]  Narayana Prasad Padhy,et al.  Unit commitment using hybrid models: a comparative study for dynamic programming, expert system, fuzzy system and genetic algorithms , 2001 .

[33]  M. Carrion,et al.  A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem , 2006, IEEE Transactions on Power Systems.

[34]  Qianfan Wang,et al.  A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output , 2012, 2012 IEEE Power and Energy Society General Meeting.

[35]  Jong-Bae Park,et al.  A Thermal Unit Commitment Approach Using an Improved Quantum Evolutionary Algorithm , 2009 .

[36]  S. Rebennack Handbook of power systems , 2010 .

[37]  T. Lau,et al.  Quantum-Inspired Evolutionary Algorithm Approach for Unit Commitment , 2009, IEEE Transactions on Power Systems.

[38]  Panos M. Pardalos,et al.  A decomposition approach to the two-stage stochastic unit commitment problem , 2012, Annals of Operations Research.

[39]  M. Anjos,et al.  Tight Mixed Integer Linear Programming Formulations for the Unit Commitment Problem , 2012, IEEE Transactions on Power Systems.

[40]  Ana Viana,et al.  A new MILP based approach for unit commitment in power production planning , 2013 .

[41]  Diego Klabjan,et al.  Incorporating Demand Response with Load Shifting into Stochastic Unit Commitment , 2013 .

[42]  Zbigniew Michalewicz,et al.  Handling Constraints in Genetic Algorithms , 1991, ICGA.

[43]  Victor H. Quintana,et al.  Semidefinite Programming: A Practical Application to Hydro -Thermal Coordination , 2002 .

[44]  Arthur I. Cohen,et al.  A Branch-and-Bound Algorithm for Unit Commitment , 1983, IEEE Transactions on Power Apparatus and Systems.

[45]  Panos M. Pardalos,et al.  Competent genetic algorithms for weighing matrices , 2011, Journal of Combinatorial Optimization.

[46]  Panos M. Pardalos,et al.  A Genetic Algorithm for the Weight Setting Problem in OSPF Routing , 2002, J. Comb. Optim..

[47]  Mauricio G. C. Resende,et al.  Biased random-key genetic algorithms for combinatorial optimization , 2011, J. Heuristics.

[48]  John A. Muckstadt,et al.  An Application of Lagrangian Relaxation to Scheduling in Power-Generation Systems , 1977, Oper. Res..

[49]  A. Bakirtzis,et al.  Optimal Self-Scheduling of a Thermal Producer in Short-Term Electricity Markets by MILP , 2010, IEEE Transactions on Power Systems.

[50]  A. Conejo,et al.  A parallel repair genetic algorithm to solve the unit commitment problem , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[51]  Claudio Gentile,et al.  Solving unit commitment problems with general ramp constraints , 2008 .