The structure and function of the bacterial chromosome.

[1]  Zemer Gitai,et al.  MreB Actin-Mediated Segregation of a Specific Region of a Bacterial Chromosome , 2005, Cell.

[2]  T. Ogura,et al.  Identification of two new genes,mukE andmukF, involved in chromosome partitioning inEscherichia coli , 1996, Molecular and General Genetics MGG.

[3]  F. Leng,et al.  Coupling DNA Supercoiling to Transcription in Defined Protein Systems* , 2004, Journal of Biological Chemistry.

[4]  M. Rossignol,et al.  Macrodomain organization of the Escherichia coli chromosome , 2004, The EMBO journal.

[5]  Margaret D Migocki,et al.  The midcell replication factory in Bacillus subtilis is highly mobile: implications for coordinating chromosome replication with other cell cycle events , 2004, Molecular microbiology.

[6]  N. Friedman,et al.  Modulation of DNA conformations through the formation of alternative high-order HU-DNA complexes. , 2004, Journal of molecular biology.

[7]  P. Graumann,et al.  Dynamic movement of actin‐like proteins within bacterial cells , 2004, EMBO reports.

[8]  C. D. Hardy,et al.  Topological domain structure of the Escherichia coli chromosome. , 2004, Genes & development.

[9]  N. Cozzarelli,et al.  The Bacterial Condensin MukBEF Compacts DNA into a Repetitive, Stable Structure , 2004, Science.

[10]  T. Hirano,et al.  Positive and negative regulation of SMC–DNA interactions by ATP and accessory proteins , 2004, The EMBO journal.

[11]  Patrick T. McGrath,et al.  Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  N. Cozzarelli,et al.  Linear ordering and dynamic segregation of the bacterial chromosome. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Omar A Saleh,et al.  Fast, DNA‐sequence independent translocation by FtsK in a single‐molecule experiment , 2004, The EMBO journal.

[14]  Zemer Gitai,et al.  An actin-like gene can determine cell polarity in bacteria. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Cees Dekker,et al.  Dual architectural roles of HU: formation of flexible hinges and rigid filaments. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[16]  A. Segall,et al.  Unequal access of chromosomal regions to each other in Salmonella: probing chromosome structure with phage λ integrase‐mediated long‐range rearrangements , 2004 .

[17]  D. Sherratt,et al.  Asymmetric activation of Xer site‐specific recombination by FtsK , 2004, EMBO reports.

[18]  R. Stein,et al.  Transcription-induced barriers to supercoil diffusion in the Salmonella typhimurium chromosome. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  H. Niki,et al.  migS, a cis‐acting site that affects bipolar positioning of oriC on the Escherichia coli chromosome , 2004, The EMBO journal.

[20]  R. Kavenoff,et al.  Electron microscopy of membrane-free folded chromosomes from Escherichia coli , 1976, Chromosoma.

[21]  O. Ryder,et al.  Electron microscopy of membrane-associated folded chromosomes of Escherichia coli , 1976, Chromosoma.

[22]  O. Espéli,et al.  A Physical and Functional Interaction between Escherichia coli FtsK and Topoisomerase IV* , 2003, Journal of Biological Chemistry.

[23]  S. Austin,et al.  Segregation of the Escherichia coli chromosome terminus , 2003, Molecular microbiology.

[24]  P. Graumann,et al.  Actin-like Proteins MreB and Mbl from Bacillus subtilis Are Required for Bipolar Positioning of Replication Origins , 2003, Current Biology.

[25]  T. Kruse,et al.  Dysfunctional MreB inhibits chromosome segregation in Escherichia coli , 2003, The EMBO journal.

[26]  O. Espéli,et al.  SetB: an integral membrane protein that affects chromosome segregation in Escherichia coli , 2003, Molecular microbiology.

[27]  S. Adhya,et al.  Effect of varying the supercoiling of DNA on transcription and its regulation. , 2003, Biochemistry.

[28]  J. Errington,et al.  RacA and the Soj‐Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis , 2003, Molecular microbiology.

[29]  D. Sherratt,et al.  Spatial and temporal organization of replicating Escherichia coli chromosomes , 2003, Molecular microbiology.

[30]  O. Espéli,et al.  Temporal regulation of topoisomerase IV activity in E. coli. , 2003, Molecular cell.

[31]  R. Losick,et al.  RacA, a Bacterial Protein That Anchors Chromosomes to the Cell Poles , 2002, Science.

[32]  Stuart Austin,et al.  The segregation of the Escherichia coli origin and terminus of replication , 2002, Molecular microbiology.

[33]  R. Losick,et al.  Does RNA polymerase help drive chromosome segregation in bacteria? , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. Gober,et al.  ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. , 2002, Molecular cell.

[35]  C. Woldringh The role of co‐transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation , 2002, Molecular microbiology.

[36]  A. Strunnikov,et al.  Cell cycle‐dependent localization of two novel prokaryotic chromosome segregation and condensation proteins in Bacillus subtilis that interact with SMC protein , 2002, The EMBO journal.

[37]  Christian Lesterlin,et al.  A dual role for the FtsK protein in Escherichia coli chromosome segregation , 2002, EMBO reports.

[38]  D. Sherratt,et al.  FtsK Is a DNA Motor Protein that Activates Chromosome Dimer Resolution by Switching the Catalytic State of the XerC and XerD Recombinases , 2002, Cell.

[39]  S. Hiraga,et al.  Sister chromosome cohesion of Escherichia coli , 2001, Molecular microbiology.

[40]  A. Grossman,et al.  Visualization of mismatch repair in bacterial cells. , 2001, Molecular cell.

[41]  O. Gileadi,et al.  Compaction of single DNA molecules induced by binding of integration host factor (IHF) , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R. B. Jensen,et al.  A moving DNA replication factory in Caulobacter crescentus , 2001, The EMBO journal.

[43]  H. Erickson,et al.  Bimodal activation of SMC ATPase by intra‐ and inter‐molecular interactions , 2001, The EMBO journal.

[44]  J. Löwe,et al.  Crystal structure of the SMC head domain: an ABC ATPase with 900 residues antiparallel coiled-coil inserted. , 2001, Journal of molecular biology.

[45]  A. J. Bendich The form of chromosomal DNA molecules in bacterial cells. , 2001, Biochimie.

[46]  C. Woldringh,et al.  The replicated ftsQAZ and minB chromosomal regions of Escherichia coli segregate on average in line with nucleoid movement , 2001, Molecular microbiology.

[47]  A. Grossman,et al.  Movement of replicating DNA through a stationary replisome. , 2000, Molecular cell.

[48]  C. Wyman,et al.  H-NS mediated compaction of DNA visualised by atomic force microscopy. , 2000, Nucleic acids research.

[49]  Akira Ishihama,et al.  Two types of localization of the DNA‐binding proteins within the Escherichia coli nucleoid , 2000, Genes to cells : devoted to molecular & cellular mechanisms.

[50]  H. Niki,et al.  Bidirectional migration of SeqA‐bound hemimethylated DNA clusters and pairing of oriC copies in Escherichia coli , 2000, Genes to cells : devoted to molecular & cellular mechanisms.

[51]  J. Sawitzke,et al.  Suppression of chromosome segregation defects of Escherichia coli muk mutants by mutations in topoisomerase I. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[52]  H. Niki,et al.  Dynamic organization of chromosomal DNA in Escherichia coli. , 2000, Genes & development.

[53]  A. Ishihama,et al.  Twelve Species of the Nucleoid-associated Protein from Escherichia coli , 1999, The Journal of Biological Chemistry.

[54]  J. Errington,et al.  Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. , 1999, Molecular cell.

[55]  S. Ueda,et al.  Growth Phase-Dependent Variation in Protein Composition of the Escherichia coli Nucleoid , 1999, Journal of bacteriology.

[56]  R. B. Jensen,et al.  The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[57]  C. Woldringh,et al.  Cellular localization of oriC during the cell cycle of Escherichia coli as analyzed by fluorescent in situ hybridization. , 1999, Biochimie.

[58]  A. Grossman,et al.  Localization of bacterial DNA polymerase: evidence for a factory model of replication. , 1998, Science.

[59]  H. Erickson,et al.  The Symmetrical Structure of Structural Maintenance of Chromosomes (SMC) and MukB Proteins: Long, Antiparallel Coiled Coils, Folded at a Flexible Hinge , 1998, The Journal of cell biology.

[60]  P. Stączek,et al.  Gyrase and Topo IV modulate chromosome domain size in vivo , 1998, Molecular microbiology.

[61]  A. Grossman,et al.  Chromosome arrangement within a bacterium , 1998, Current Biology.

[62]  T. Odijk,et al.  Osmotic compaction of supercoiled DNA into a bacterial nucleoid. , 1998, Biophysical chemistry.

[63]  P. Silver,et al.  Use of time‐lapse microscopy to visualize rapid movement of the replication origin region of the chromosome during the cell cycle in Bacillus subtilis , 1998, Molecular microbiology.

[64]  A. Grossman,et al.  Characterization of a prokaryotic SMC protein involved in chromosome partitioning. , 1998, Genes & development.

[65]  H. Niki,et al.  Polar localization of the replication origin and terminus in Escherichia coli nucleoids during chromosome partitioning. , 1998, Genes & development.

[66]  A. Grossman,et al.  Identification and Characterization of a Bacterial Chromosome Partitioning Site , 1998, Cell.

[67]  A. Murray,et al.  Chromosome and Low Copy Plasmid Segregation in E. coli: Visual Evidence for Distinct Mechanisms , 1997, Cell.

[68]  J. Errington,et al.  Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. , 1997, Genes & development.

[69]  J. Gober,et al.  Cell Cycle–Dependent Polar Localization of Chromosome Partitioning Proteins in Caulobacter crescentus , 1997, Cell.

[70]  A. Grossman,et al.  Bipolar Localization of the Replication Origin Regions of Chromosomes in Vegetative and Sporulating Cells of B. subtilis , 1997, Cell.

[71]  A S Belmont,et al.  In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition , 1996, The Journal of cell biology.

[72]  J. Roth,et al.  Surveying a supercoil domain by using the gamma delta resolution system in Salmonella typhimurium , 1996, Journal of bacteriology.

[73]  D. Ussery,et al.  The chromatin‐associated protein H‐NS alters DNA topology in vitro. , 1994, The EMBO journal.

[74]  J. Wang,et al.  Anchoring of DNA to the bacterial cytoplasmic membrane through cotranscriptional synthesis of polypeptides encoding membrane proteins or proteins for export: a mechanism of plasmid hypernegative supercoiling in mutants deficient in DNA topoisomerase I , 1993, Journal of bacteriology.

[75]  T. Ogura,et al.  E.coli MukB protein involved in chromosome partition forms a homodimer with a rod‐and‐hinge structure having DNA binding and ATP/GTP binding activities. , 1992, The EMBO journal.

[76]  T. Ogura,et al.  The new gene mukB codes for a 177 kd protein with coiled‐coil domains involved in chromosome partitioning of E. coli. , 1991, The EMBO journal.

[77]  N. Osheroff,et al.  Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers. , 1990, The EMBO journal.

[78]  H. Nash,et al.  Bending and supercoiling of DNA at the attachment site of bacteriophage lambda. , 1990, Trends in biochemical sciences.

[79]  J. Lodge,et al.  Formation of supercoiling domains in plasmid pBR322 , 1989, Journal of bacteriology.

[80]  A. Kornberg,et al.  Membrane attachment activates dnaA protein, the initiation protein of chromosome replication in Escherichia coli. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[81]  J. Wang,et al.  Supercoiling of the DNA template during transcription. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[82]  T. Baker,et al.  Complete enzymatic replication of plasmids containing the origin of the Escherichia coli chromosome. , 1986, The Journal of biological chemistry.

[83]  R. Sinden,et al.  Chromosomes in living Escherichia coli cells are segregated into domains of supercoiling. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[84]  K. Drlica,et al.  Association of the Folded Chromosome with the Cell Envelope of Escherichia coli: Nature of the Membrane-Associated DNA , 1978, Journal of bacteriology.

[85]  D. Pettijohn,et al.  RNA molecules bound to the folded bacterial genome stabilize DNA folds and segregate domains of supercoiling. , 1974, Cold Spring Harbor symposia on quantitative biology.

[86]  H. Delius,et al.  Electron microscopic studies on the folded chromosome of Escherichia coli. , 1974, Cold Spring Harbor symposia on quantitative biology.

[87]  A. Worcel,et al.  On the structure of the folded chromosome of Escherichia coli. , 1972, Journal of molecular biology.