Symplectic integrators for second-order linear non-autonomous equations

Abstract Two families of symplectic methods specially designed for second-order time-dependent linear systems are presented. Both are obtained from the Magnus expansion of the corresponding first-order equation, but otherwise they differ in significant aspects. The first family is addressed to problems with low to moderate dimension, whereas the second is more appropriate when the dimension is large, in particular when the system corresponds to a linear wave equation previously discretised in space. Several numerical experiments illustrate the main features of the new schemes.

[1]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[2]  Emilio Defez,et al.  Efficient and accurate algorithms for computing matrix trigonometric functions , 2017, J. Comput. Appl. Math..

[3]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[4]  N. Mclachlan Theory and Application of Mathieu Functions , 1965 .

[5]  Antonella Zanna,et al.  Collocation and Relaxed Collocation for the Fer and the Magnus Expansions , 1999 .

[6]  H. Munthe-Kaas,et al.  Computations in a free Lie algebra , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  F. G. Major,et al.  Charged Particle Traps II , 2009 .

[8]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[9]  Michael Drewsen,et al.  Harmonic linear Paul trap: Stability diagram and effective potentials , 2000 .

[10]  W. Paul Electromagnetic traps for charged and neutral particles , 1990 .

[11]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[12]  N. C. MacDonald,et al.  Five parametric resonances in a microelectromechanical system , 1998, Nature.

[13]  Sergio Blanes,et al.  Solving the Pertubed Quantum Harmonic Oscillator in Imaginary Time Using Splitting Methods with Complex Coefficients , 2014 .

[14]  A. Iserles,et al.  On the solution of linear differential equations in Lie groups , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  Fernando Casas,et al.  Efficient numerical integration of Nth-order non-autonomous linear differential equations , 2016, J. Comput. Appl. Math..

[16]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[17]  Sergio Blanes,et al.  Symplectic integrators for the matrix Hill equation , 2017, J. Comput. Appl. Math..

[18]  Fernando Casas,et al.  Splitting methods for non-autonomous linear systems , 2007, Int. J. Comput. Math..

[19]  Fernando Casas,et al.  Splitting methods in the numerical integration of non-autonomous dynamical systems , 2012 .

[20]  Arieh Iserles,et al.  Efficient methods for linear Schrödinger equation in the semiclassical regime with time-dependent potential , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Awad H. Al-Mohy,et al.  New Algorithms for Computing the Matrix Sine and Cosine Separately or Simultaneously , 2015, SIAM J. Sci. Comput..

[22]  A. Dragt,et al.  Lie methods for nonlinear dynamics with applications to accelerator physics , 2011 .

[23]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics: Hamiltonian PDEs , 2005 .

[24]  S. Blanes,et al.  The Magnus expansion and some of its applications , 2008, 0810.5488.

[25]  Fernando Casas,et al.  A Concise Introduction to Geometric Numerical Integration , 2016 .

[26]  S. Blanes,et al.  Practical symplectic partitioned Runge--Kutta and Runge--Kutta--Nyström methods , 2002 .