Presynaptic targeting of botulinum neurotoxin type A requires a tripartite PSG‐Syt1‐SV2 plasma membrane nanocluster for synaptic vesicle entry

The unique nerve terminal targeting of botulinum neurotoxin type A (BoNT/A) is due to its capacity to bind two receptors on the neuronal plasma membrane: polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Whether and how PSGs and SV2 may coordinate other proteins for BoNT/A recruitment and internalization remains unknown. Here, we demonstrate that the targeted endocytosis of BoNT/A into synaptic vesicles (SVs) requires a tripartite surface nanocluster. Live‐cell super‐resolution imaging and electron microscopy of catalytically inactivated BoNT/A wildtype and receptor‐binding‐deficient mutants in cultured hippocampal neurons demonstrated that BoNT/A must bind coincidentally to a PSG and SV2 to target synaptic vesicles. We reveal that BoNT/A simultaneously interacts with a preassembled PSG‐synaptotagmin‐1 (Syt1) complex and SV2 on the neuronal plasma membrane, facilitating Syt1‐SV2 nanoclustering that controls endocytic sorting of the toxin into synaptic vesicles. Syt1 CRISPRi knockdown suppressed BoNT/A‐ and BoNT/E‐induced neurointoxication as quantified by SNAP‐25 cleavage, suggesting that this tripartite nanocluster may be a unifying entry point for selected botulinum neurotoxins that hijack this for synaptic vesicle targeting.

[1]  Merja Joensuu,et al.  Surface SV2A-Syt1 nanoclusters act as a sequestration hub that limits dynamin-1 recruitment and targeting to recycling synaptic vesicles , 2022, bioRxiv.

[2]  J. Fantini,et al.  Molecular landscape of BoNT/B bound to a membrane-inserted synaptotagmin/ganglioside complex , 2022, Cellular and Molecular Life Sciences.

[3]  Yingmei Pei,et al.  Synaptotagmin-1 is a bidirectional Ca2+ sensor for neuronal endocytosis , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Merja Joensuu,et al.  SV2A-Syt1 interaction controls surface nanoclustering and access to recycling synaptic vesicles , 2021, bioRxiv.

[5]  J. Fantini,et al.  Molecular landscape of BoNT/B bound to a membrane-inserted synaptotagmin/ganglioside complex , 2021, Cellular and Molecular Life Sciences.

[6]  G. Balistreri,et al.  MOLECULAR VIDEOGAMING: SUPER-RESOLVED TRAJECTORY-BASED NANOCLUSTERING ANALYSIS USING SPATIO-TEMPORAL INDEXING , 2021, bioRxiv.

[7]  J. Olivo-Marin,et al.  Cytokine receptor cluster size impacts its endocytosis and signaling , 2021, Proceedings of the National Academy of Sciences.

[8]  K. Kavukcuoglu,et al.  Highly accurate protein structure prediction for the human proteome , 2021, Nature.

[9]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[10]  Qiu-Wen Wang,et al.  Synaptotagmin-1 interacts with PI(4,5)P2 to initiate synaptic vesicle docking in hippocampal neurons. , 2021, Cell reports.

[11]  E. Chapman,et al.  Acute disruption of the synaptic vesicle membrane protein synaptotagmin 1 using knockoff in mouse hippocampal neurons , 2020, eLife.

[12]  Ramón Martínez-Mármol,et al.  An Epilepsy-Associated SV2A Mutation Disrupts Synaptotagmin-1 Expression and Activity-Dependent Trafficking , 2020, The Journal of Neuroscience.

[13]  T. Lang,et al.  Anatomy of a viral entry platform differentially functionalized by integrins α3 and α6 , 2020, Scientific Reports.

[14]  Krishnan Raghunathan,et al.  Structured clustering of the glycosphingolipid GM1 is required for membrane curvature induced by cholera toxin , 2020, Proceedings of the National Academy of Sciences.

[15]  C. Montecucco,et al.  Tables of Toxicity of Botulinum and Tetanus Neurotoxins , 2019, Toxins.

[16]  Teng Teng,et al.  Optimization of AsCas12a for combinatorial genetic screens in human cells , 2019, bioRxiv.

[17]  J. Fantini,et al.  Gangliosides interact with synaptotagmin to form the high-affinity receptor complex for botulinum neurotoxin B , 2019, Proceedings of the National Academy of Sciences.

[18]  D. Jameson,et al.  Characterization of clostridium botulinum neurotoxin serotype A (BoNT/A) and fibroblast growth factor receptor interactions using a novel receptor dimerization assay , 2019, bioRxiv.

[19]  G. Masuyer,et al.  Botulinum and Tetanus Neurotoxins. , 2019, Annual review of biochemistry.

[20]  Kornel Labun,et al.  CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing , 2019, Nucleic Acids Res..

[21]  T. Matsui,et al.  A viral-fusion-peptide-like molecular switch drives membrane insertion of botulinum neurotoxin A1 , 2018, Nature Communications.

[22]  Anne E Carpenter,et al.  CellProfiler 3.0: Next-generation image processing for biology , 2018, PLoS biology.

[23]  Sungroh Yoon,et al.  Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity , 2018, Nature Biotechnology.

[24]  G. Goodhill,et al.  Visualizing endocytic recycling and trafficking in live neurons by subdiffractional tracking of internalized molecules , 2017, Nature Protocols.

[25]  M. Cousin Integration of Synaptic Vesicle Cargo Retrieval with Endocytosis at Central Nerve Terminals , 2017, Front. Cell. Neurosci..

[26]  R. Franzen,et al.  Puzzling Out Synaptic Vesicle 2 Family Members Functions , 2017, Front. Mol. Neurosci..

[27]  C. Montecucco,et al.  Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology , 2017, Pharmacological Reviews.

[28]  Robert Gustafsson,et al.  Glycans Confer Specificity to the Recognition of Ganglioside Receptors by Botulinum Neurotoxin A. , 2017, Journal of the American Chemical Society.

[29]  Geoffrey J Goodhill,et al.  Subdiffractional tracking of internalized molecules reveals heterogeneous motion states of synaptic vesicles , 2016, The Journal of cell biology.

[30]  K. Lam,et al.  N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A , 2016, Nature Structural &Molecular Biology.

[31]  Kornel Labun,et al.  CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering , 2016, Nucleic Acids Res..

[32]  Igor Orlov,et al.  ClusterViSu, a method for clustering of protein complexes by Voronoi tessellation in super-resolution microscopy , 2016, Scientific Reports.

[33]  S. Manley,et al.  Influenza A viruses use multivalent sialic acid clusters for cell binding and receptor activation , 2016, bioRxiv.

[34]  Michael A. Cousin,et al.  The iTRAPs: Guardians of Synaptic Vesicle Cargo Retrieval During Endocytosis , 2016, Front. Synaptic Neurosci..

[35]  D. Nair,et al.  Botulinum neurotoxin type-A enters a non-recycling pool of synaptic vesicles , 2016, Scientific Reports.

[36]  R. Zeleny,et al.  Generation and Characterization of Six Recombinant Botulinum Neurotoxins as Reference Material to Serve in an International Proficiency Test , 2015, Toxins.

[37]  H. Bigalke,et al.  Botulinum Neurotoxins: Qualitative and Quantitative Analysis Using the Mouse Phrenic Nerve Hemidiaphragm Assay (MPN) , 2015, Toxins.

[38]  Timothy E. Reddy,et al.  Highly Specific Epigenome Editing by CRISPR/Cas9 Repressors for Silencing of Distal Regulatory Elements , 2015, Nature Methods.

[39]  Jong Bae Seo,et al.  Synaptotagmin-1 binds to PIP2-containing membrane but not to SNAREs at physiological ionic strength , 2015, Nature Structural &Molecular Biology.

[40]  Eric A. Johnson,et al.  Botulinum Neurotoxins Can Enter Cultured Neurons Independent of Synaptic Vesicle Recycling , 2015, PloS one.

[41]  T. Maritzen,et al.  Overlapping functions of stonin 2 and SV2 in sorting of the calcium sensor synaptotagmin 1 to synaptic vesicles , 2015, Proceedings of the National Academy of Sciences.

[42]  P. McNutt,et al.  Accelerated intoxication of GABAergic synapses by botulinum neurotoxin A disinhibits stem cell-derived neuron networks prior to network silencing , 2015, Front. Cell. Neurosci..

[43]  Daniel Choquet,et al.  Control of Autophagosome Axonal Retrograde Flux by Presynaptic Activity Unveiled Using Botulinum Neurotoxin Type A , 2015, The Journal of Neuroscience.

[44]  W. Römer,et al.  Plasma membrane reorganization: A glycolipid gateway for microbes. , 2015, Biochimica et biophysica acta.

[45]  Daniel Choquet,et al.  Glutamate-Induced AMPA Receptor Desensitization Increases Their Mobility and Modulates Short-Term Plasticity through Unbinding from Stargazin , 2015, Neuron.

[46]  D. V. van Aalten,et al.  Phosphorylation of Synaptic Vesicle Protein 2A at Thr84 by Casein Kinase 1 Family Kinases Controls the Specific Retrieval of Synaptotagmin-1 , 2015, The Journal of Neuroscience.

[47]  Ken Jacobson,et al.  Nanoclustering as a dominant feature of plasma membrane organization , 2014, Journal of Cell Science.

[48]  C. Montecucco,et al.  Botulinum neurotoxins: genetic, structural and mechanistic insights , 2014, Nature Reviews Microbiology.

[49]  George M. Church,et al.  CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing , 2014, Nucleic Acids Res..

[50]  J. Marks,et al.  Identification of the synaptic vesicle glycoprotein 2 receptor binding site in botulinum neurotoxin A , 2014, FEBS letters.

[51]  Thomas C. Südhof,et al.  Synaptotagmin-1 and Synaptotagmin-7 Trigger Synchronous and Asynchronous Phases of Neurotransmitter Release , 2013, Neuron.

[52]  T. Ceska,et al.  Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A , 2013, Nature.

[53]  G. Moonen,et al.  Expression of SV2 isoforms during rodent brain development , 2013, BMC Neuroscience.

[54]  Daniel Choquet,et al.  Super-Resolution Imaging Reveals That AMPA Receptors Inside Synapses Are Dynamically Organized in Nanodomains Regulated by PSD95 , 2013, The Journal of Neuroscience.

[55]  J. Dolly,et al.  Molecular Components Required for Resting and Stimulated Endocytosis of Botulinum Neurotoxins by Glutamatergic and Peptidergic Neurons in Addition, Dy- Namin, Clathrin, Adaptor Protein Complex-2 (ap2), and Amphiphysin Contribute to the Depolarization-evoked Entry. for Fast Recycling of Scsvs, Knockd , 2022 .

[56]  R. Stevens,et al.  Identification of Fibroblast Growth Factor Receptor 3 (FGFR3) as a Protein Receptor for Botulinum Neurotoxin Serotype A (BoNT/A) , 2013, PLoS pathogens.

[57]  J. Sibarita,et al.  Real-Time Analysis and Visualization for Single-Molecule Based Super-Resolution Microscopy , 2013, PloS one.

[58]  C. Montecucco,et al.  Botulinum Neurotoxin Type A is Internalized and Translocated from Small Synaptic Vesicles at the Neuromuscular Junction , 2013, Molecular Neurobiology.

[59]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[60]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[61]  M. Lindau,et al.  Synaptotagmin 1 Is Necessary for the Ca2+ Dependence of Clathrin-Mediated Endocytosis , 2012, Journal of Neuroscience.

[62]  C. Shoemaker,et al.  Botulinum Neurotoxin Is Shielded by NTNHA in an Interlocked Complex , 2012, Science.

[63]  M. Dahan,et al.  Wavelet analysis for single molecule localization microscopy. , 2012, Optics express.

[64]  E. Chapman,et al.  Uncoupling the roles of synaptotagmin I as a dual Ca2+ sensor during endo- and exocytosis of synaptic vesicles , 2011, Nature Neuroscience.

[65]  R. Krug,et al.  The Influenza Viruses , 2011, The Viruses.

[66]  Sally Martin,et al.  Dynamin Inhibition Blocks Botulinum Neurotoxin Type A Endocytosis in Neurons and Delays Botulism* , 2011, The Journal of Biological Chemistry.

[67]  K. Takei,et al.  Fission of Tubular Endosomes Triggers Endosomal Acidification and Movement , 2011, PloS one.

[68]  Eric A. Johnson,et al.  Botulinum Neurotoxin D Uses Synaptic Vesicle Protein SV2 and Gangliosides as Receptors , 2011, PLoS pathogens.

[69]  R. Chan,et al.  Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. , 2011, Developmental cell.

[70]  N. Akaike,et al.  Effects of A2 type botulinum toxin on spontaneous miniature and evoked transmitter release from the rat spinal excitatory and inhibitory synapses. , 2010, Toxicon : official journal of the International Society on Toxinology.

[71]  Amy L. Nowack,et al.  SV2 regulates neurotransmitter release via multiple mechanisms. , 2010, American journal of physiology. Cell physiology.

[72]  Mauricio Montal,et al.  Botulinum neurotoxin: a marvel of protein design. , 2010, Annual review of biochemistry.

[73]  N. Bache,et al.  Dynamin I phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles , 2010, Nature Neuroscience.

[74]  Amy L. Nowack,et al.  Cotrafficking of SV2 and Synaptotagmin at the Synapse , 2010, The Journal of Neuroscience.

[75]  J. Barbieri,et al.  Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F. , 2009, Biochemistry.

[76]  M. Popoff,et al.  Differential entry of botulinum neurotoxin A into neuronal and intestinal cells , 2009, Cellular microbiology.

[77]  Edwin R Chapman,et al.  Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. , 2008, Molecular biology of the cell.

[78]  R. Stevens,et al.  Crystal Structure of Botulinum Neurotoxin Type A in Complex with the Cell Surface Co-Receptor GT1b—Insight into the Toxin–Neuron Interaction , 2008, PLoS pathogens.

[79]  Thomas D. Schmittgen,et al.  Analyzing real-time PCR data by the comparative CT method , 2008, Nature Protocols.

[80]  Daniel Choquet,et al.  Surface Mobility of Postsynaptic AMPARs Tunes Synaptic Transmission , 2008, Science.

[81]  M. Caleo,et al.  Long-Distance Retrograde Effects of Botulinum Neurotoxin A , 2008, The Journal of Neuroscience.

[82]  M. Tokunaga,et al.  Highly inclined thin illumination enables clear single-molecule imaging in cells , 2008, Nature Methods.

[83]  Eric A. Johnson,et al.  Jcb: Article , 2022 .

[84]  F. Meunier,et al.  The janus faces of botulinum neurotoxin: Sensational medicine and deadly biological weapon , 2007, Journal of neuroscience research.

[85]  J. Barbieri,et al.  Association of botulinum neurotoxin serotypes a and B with synaptic vesicle protein complexes. , 2007, Biochemistry.

[86]  C. Montecucco,et al.  Peculiar binding of botulinum neurotoxins. , 2007, ACS chemical biology.

[87]  Katrin Deinhardt,et al.  Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1 , 2006, The Journal of cell biology.

[88]  Eric A. Johnson,et al.  SV2 Is the Protein Receptor for Botulinum Neurotoxin A , 2006, Science.

[89]  V. Haucke,et al.  Stonin 2 is an AP-2-dependent endocytic sorting adaptor for synaptotagmin internalization and recycling. , 2006, Developmental cell.

[90]  V. Haucke Phosphoinositide regulation of clathrin-mediated endocytosis. , 2005, Biochemical Society transactions.

[91]  S. Mochida,et al.  SV2A and SV2C contain a unique synaptotagmin-binding site , 2005, Molecular and Cellular Neuroscience.

[92]  Volker Haucke,et al.  Recognition of a Basic AP-2 Binding Motif within the C2B Domain of Synaptotagmin Is Dependent on Multimerization* , 2004, Journal of Biological Chemistry.

[93]  R. Janz,et al.  SV2B Regulates Synaptotagmin 1 by Direct Interaction* , 2004, Journal of Biological Chemistry.

[94]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[95]  A. B. Maksymowych,et al.  Structural Features of the Botulinum Neurotoxin Molecule That Govern Binding and Transcytosis across Polarized Human Intestinal Epithelial Cells , 2004, Journal of Pharmacology and Experimental Therapeutics.

[96]  H. Bigalke,et al.  Synaptotagmins I and II Act as Nerve Cell Receptors for Botulinum Neurotoxin G* , 2004, Journal of Biological Chemistry.

[97]  C. Schengrund,et al.  Botulinum neurotoxin A changes conformation upon binding to ganglioside GT1b. , 2004, Biochemistry.

[98]  V. Haucke,et al.  Functional dissection of the interactions of stonin 2 with the adaptor complex AP-2 and synaptotagmin. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[99]  J. Keller,et al.  Uptake of botulinum neurotoxin into cultured neurons. , 2004, Biochemistry.

[100]  H. Bigalke,et al.  The HCC‐domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction , 2003, Molecular microbiology.

[101]  Philippe Rostaing,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking , 2003, Science.

[102]  Eric A. Johnson,et al.  Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells , 2003, The Journal of cell biology.

[103]  B. Davletov,et al.  Getting muscles moving again after botulinum toxin: novel therapeutic challenges. , 2003, Trends in molecular medicine.

[104]  D. Choquet,et al.  Regulation of AMPA receptor lateral movements , 2002, Nature.

[105]  P. De Camilli,et al.  Dual interaction of synaptotagmin with μ2‐ and α‐adaptin facilitates clathrin‐coated pit nucleation , 2000 .

[106]  S. Swaminathan,et al.  Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B , 2000, Nature Structural Biology.

[107]  H. Hidaka,et al.  Phosphorylation of Synaptic Vesicle Protein 2 Modulates Binding to Synaptotagmin* , 2000, The Journal of Biological Chemistry.

[108]  D. Trono,et al.  A Third-Generation Lentivirus Vector with a Conditional Packaging System , 1998, Journal of Virology.

[109]  R. Stevens,et al.  Crystal structure of botulinum neurotoxin type A and implications for toxicity , 1998, Nature Structural Biology.

[110]  R. Batchelor,et al.  Isoform-specific, Calcium-regulated Interaction of the Synaptic Vesicle Proteins SV2 and Synaptotagmin* , 1996, The Journal of Biological Chemistry.

[111]  Richard G. W. Anderson,et al.  Synaptotagmin I is a high affinity receptor for clathrin AP-2: Implications for membrane recycling , 1994, Cell.

[112]  F. Benfenati,et al.  Botulinum neurotoxins serotypes A and E cleave SNAP‐25 at distinct COOH‐terminal peptide bonds , 1993, FEBS letters.

[113]  A. Kusumi,et al.  Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. , 1993, Biophysical journal.

[114]  Thomas C. Südhof,et al.  Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25 , 1993, Nature.

[115]  R. Scheller,et al.  Synaptic vesicle membrane proteins interact to form a multimeric complex , 1992, The Journal of cell biology.

[116]  K. Sandhoff,et al.  Metabolism and intracellular transport of glycosphingolipids. , 1990, Biochemistry.

[117]  C. Montecucco How do tetanus and botulinum toxins bind to neuronal membranes , 1986 .

[118]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[119]  D. Gill,et al.  Bacterial toxins: a table of lethal amounts , 1982, Microbiological reviews.

[120]  P. Blanquet Ultrahistochemical study on the ruthenium red surface staining , 1976, Histochemistry.

[121]  M. Rapport,et al.  THE BINDING OF BOTULINUM TOXIN TO MEMBRANE LIPIDS: PHOSPHOLIPIDS AND PROTEOLIPID , 1971, Journal of neurochemistry.

[122]  M. Rapport,et al.  Ganglioside inactivation of botulinum toxin , 1971, Journal of neurochemistry.

[123]  Merja Joensuu,et al.  Combining Single Molecule Super-Resolution Imaging Techniques to Unravel the Nanoscale Organization of the Presynapse. , 2021, Methods in molecular biology.

[124]  E. Chiricozzi,et al.  Glycosphingolipids. , 2021, Advances in experimental medicine and biology.

[125]  Merja Joensuu,et al.  Single-Molecule Imaging of Recycling Synaptic Vesicles in Live Neurons , 2020 .

[126]  R. Young Proximity Ligation Assay. , 2019, Methods in molecular biology.

[127]  Marc López-Cano,et al.  Proximity Ligation Assay Image Analysis Protocol: Addressing Receptor-Receptor Interactions. , 2019, Methods in molecular biology.

[128]  A. Rummel Two Feet on the Membrane: Uptake of Clostridial Neurotoxins. , 2017, Current topics in microbiology and immunology.

[129]  A. Rummel Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. , 2013, Current topics in microbiology and immunology.

[130]  R. Compans,et al.  Botulinum Neurotoxins , 2013, Current Topics in Microbiology and Immunology.

[131]  E. Hosy,et al.  High-content super-resolution imaging of live cell by uPAINT. , 2013, Methods in molecular biology.

[132]  David A. Williams,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single – Quantum Dot Tracking , 2012 .

[133]  B. Poulain [Botulinum neurotoxin]. , 2010, Revue neurologique.

[134]  D. Choquet,et al.  [Surface mobility of postsynaptic AMPARs tunes synaptic transmission]. , 2008, Medecine sciences : M/S.

[135]  R. Stevens,et al.  Molecular evolution of antibody cross-reactivity for two subtypes of type A botulinum neurotoxin , 2007, Nature Biotechnology.

[136]  M. Montal,et al.  Translocation of botulinum neurotoxin light chain protease through the heavy chain channel , 2003, Nature Structural Biology.

[137]  C. McBain,et al.  Snap-25 is polarized to axons and abundant along the axolemma: an immunogold study of intact neurons , 2000, Journal of neurocytology.

[138]  P. De Camilli,et al.  Dual interaction of synaptotagmin with mu2- and alpha-adaptin facilitates clathrin-coated pit nucleation. , 2000, The EMBO journal.

[139]  V. P. Whittaker,et al.  The Synaptic Vesicle , 1984 .

[140]  W. Wooster,et al.  Crystal structure of , 2005 .