Global Identification of Electrical and Mechanical Parameters in PMSM Drive Based on Dynamic Self-Learning PSO

A global parameter estimation method for a permanent magnet synchronous machines (PMSM) drive system is proposed, where the electrical parameters, mechanical parameters, and voltage-source-inverter (VSI) nonlinearity are regarded as a whole and parameter estimation is formulated as a single parameter optimization model. A dynamic learning estimator is proposed for tracking the electrical parameters, mechanical parameters, and VSI of PMSM drive by using dynamic self-learning particle swarm optimization (DSLPSO). In DSLPSO, a novel movement modification equation with dynamic exemplar learning strategy is designed to ensure its diversity and achieve a reasonable tradeoff between the exploitation and exploration during the search process. Moreover, a nonlinear multiscale based interactive learning operator is introduced for accelerating the convergence speed of the $Pbest$ particles; meanwhile a dynamic opposition-based learning strategy is designed to facilitate the $gBest$ particle to explore a potentially better region. The proposed algorithm is applied to parameter estimation for a PMSM drive system. The results show that the proposed method has better performance in tracking the variation of electrical parameters, and estimating the immeasurable mechanical parameters and the VSI disturbance voltage simultaneously.

[1]  Hyun-Soo Kim,et al.  Nonlinearity estimation and compensation of PWM VSI for PMSM under resistance and flux linkage uncertainty , 2006, IEEE Transactions on Control Systems Technology.

[2]  Lipei Huang,et al.  Online Identification of Permanent Magnet Flux Based on Extended Kalman Filter for IPMSM Drive With Position Sensorless Control , 2012, IEEE Transactions on Industrial Electronics.

[3]  Mohammad Hossein Vafaie,et al.  Minimizing Torque and Flux Ripples and Improving Dynamic Response of PMSM Using a Voltage Vector With Optimal Parameters , 2016, IEEE Transactions on Industrial Electronics.

[4]  M. W. Dunnigan,et al.  Parameter estimation of an induction machine using advanced particle swarm optimisation algorithms , 2010 .

[5]  Narayan C. Kar,et al.  Current Injection-Based Online Parameter and VSI Nonlinearity Estimation for PMSM Drives Using Current and Voltage DC Components , 2016, IEEE Transactions on Transportation Electrification.

[6]  Chia-Feng Juang,et al.  A hybrid of genetic algorithm and particle swarm optimization for recurrent network design , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  Iqbal Husain,et al.  Online Parameter Estimation and Adaptive Control of Permanent-Magnet Synchronous Machines , 2010, IEEE Transactions on Industrial Electronics.

[8]  Kan Liu,et al.  Parameter Estimation for VSI-Fed PMSM Based on a Dynamic PSO With Learning Strategies , 2017, IEEE Transactions on Power Electronics.

[9]  Hyun-Soo Kim,et al.  A new instantaneous torque control of PM synchronous motor for high performance direct drive applications , 1997 .

[10]  Kan Liu,et al.  GPU Implementation of DPSO-RE Algorithm for Parameters Identification of Surface PMSM Considering VSI Nonlinearity , 2017, IEEE Journal of Emerging and Selected Topics in Power Electronics.

[11]  Jin Xu,et al.  Self-Commissioning of Permanent Magnet Synchronous Machine Drives at Standstill Considering Inverter Nonlinearities , 2014, IEEE Transactions on Power Electronics.

[12]  Chia-Nan Ko,et al.  Identification of non-linear systems using radial basis function neural networks with time-varying learning algorithm , 2012, IET Signal Process..

[13]  N. Takorabet,et al.  Inductance Calculations in Permanent-Magnet Motors Under Fault Conditions , 2012, IEEE Transactions on Magnetics.

[14]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[15]  Jing Zhang,et al.  Coevolutionary Particle Swarm Optimization Using AIS and its Application in Multiparameter Estimation of PMSM , 2013, IEEE Transactions on Cybernetics.

[16]  Yao Da,et al.  A New Approach to Fault Diagnostics for Permanent Magnet Synchronous Machines Using Electromagnetic Signature Analysis , 2013, IEEE Transactions on Power Electronics.

[17]  C. B. Jacobina,et al.  A microcomputer-based load angle and frequency measurement , 1996, Quality Measurement: The Indispensable Bridge between Theory and Reality (No Measurements? No Science! Joint Conference - 1996: IEEE Instrumentation and Measurement Technology Conference and IMEKO Tec.

[18]  Chen Chao,et al.  Identification of PMSM based on EKF and elman neural network , 2009, 2009 IEEE International Conference on Automation and Logistics.

[19]  Wenqing Huang,et al.  Accurate Torque Control of Interior Permanent Magnet Synchronous Machine , 2014, IEEE Transactions on Energy Conversion.

[20]  D. Cartes,et al.  Synchronisation based adaptive parameter identification for permanent magnet synchronous motors , 2007 .

[21]  Yanru Zhong,et al.  On-line identification methods of parameters for permanent magnet synchronous motors based on cascade MRAS , 2015, 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia).

[22]  Hak-Keung Lam,et al.  Hybrid Particle Swarm Optimization With Wavelet Mutation and Its Industrial Applications , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[23]  Xiaoguang Zhang,et al.  Sliding-Mode Observer-Based Mechanical Parameter Estimation for Permanent Magnet Synchronous Motor , 2016, IEEE Transactions on Power Electronics.

[24]  Stéphane Caux,et al.  Kalman-Filter-Based Indicator for Online Interturn Short Circuits Detection in Permanent-Magnet Synchronous Generators , 2015, IEEE Transactions on Industrial Electronics.

[25]  Tomonobu Senjyu,et al.  Accurate parameter measurement for high speed permanent magnet synchronous motors , 2001, 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230).

[26]  Kan Liu,et al.  GPU-Accelerated Parallel Coevolutionary Algorithm for Parameters Identification and Temperature Monitoring in Permanent Magnet Synchronous Machines , 2015, IEEE Transactions on Industrial Informatics.

[27]  K. Fujita,et al.  Instantaneous speed detection with parameter identification for AC servo systems , 1990, Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting.

[28]  Bing Chen,et al.  Approximation-Based Discrete-Time Adaptive Position Tracking Control for Interior Permanent Magnet Synchronous Motors , 2015, IEEE Transactions on Cybernetics.

[29]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[30]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[31]  Rong-Ching Wu,et al.  Parameter Identification of Induction Machine With a Starting No-Load Low-Voltage Test , 2012, IEEE Transactions on Industrial Electronics.

[32]  Marko Hinkkanen,et al.  Adaptation of Motor Parameters in Sensorless PMSM Drives , 2007 .

[33]  A. Piippo,et al.  Adaptation of Motor Parameters in Sensorless PMSM Drives , 2007, IEEE Transactions on Industry Applications.

[34]  Hayde Peregrina-Barreto,et al.  Parameter Identification of PMSMs Using Experimental Measurements and a PSO Algorithm , 2015, IEEE Transactions on Instrumentation and Measurement.

[35]  Kan Liu,et al.  Parameter Estimation for Condition Monitoring of PMSM Stator Winding and Rotor Permanent Magnets , 2013, IEEE Transactions on Industrial Electronics.

[36]  G. Lambert-Torres,et al.  A hybrid particle swarm optimization applied to loss power minimization , 2005, IEEE Transactions on Power Systems.

[37]  Xinghuo Yu,et al.  AC Servo Systems , 2011 .

[38]  Wenxin Liu,et al.  Permanent Magnet Synchronous Motor Parameter Identification using Particle Swarm Optimization , 2008 .

[39]  Sheng-Ming Yang,et al.  Observer-based automatic control loop tuning for servo motor drives , 2013, 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS).

[40]  P. Regulski,et al.  Estimation of Composite Load Model Parameters Using an Improved Particle Swarm Optimization Method , 2015, IEEE Transactions on Power Delivery.