Spin-polarized quantum pumping in bilayer graphene

We study adiabatic quantum pumping in bilayer graphene where two-barrier potentials are weakly modulated as pumping parameters. Comparing the results with those for a normal quantum pump of non-chiral quasiparticles, we find that the chirality of quasiparticles in bilayer graphene heavily affects the pumped current through chiral tunnelling. When an exchange splitting induced by the proximity of a ferromagnetic insulator is introduced, the pumped current becomes spin-polarized. It is interesting that an almost 100% polarized charge current and a pure spin current with vanishing charge current can all be achieved under suitable conditions. The experimental feasibility and the interlayer asymmetric effect in bilayer graphene caused by the gate and the ferromagnet structures are also discussed. The results are useful for spintronics applications based on graphene.

[1]  E. Manykin,et al.  Spin polarized quantum pump effect in zigzag graphene nanoribbons , 2011 .

[2]  M. Blaauboer,et al.  Quantum pumping in a ballistic graphene bilayer , 2010, 1009.1033.

[3]  G. Iannaccone,et al.  Electric field control of spin rotation in bilayer graphene. , 2010, Nano letters.

[4]  I. Zozoulenko,et al.  Interactions and screening in gated bilayer graphene nanoribbons , 2010, 1006.1774.

[5]  P. Recher,et al.  Quantum dots and spin qubits in graphene , 2010, Nanotechnology.

[6]  M. Pacheco,et al.  Electronic transport through bilayer graphene flakes , 2010, 1002.3573.

[7]  M. Koshino,et al.  Interlayer screening effect in graphene multilayers with A B A and A B C stacking , 2009, 0911.3484.

[8]  Y. Yang,et al.  Single-parameter charge pump in a zigzag graphene nanoribbon , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  R. Zhu,et al.  Quantum pumping with adiabatically modulated barriers in graphene , 2009, 0908.0296.

[10]  P. San-Jose,et al.  Quantum pumping in graphene , 2009, 0907.1568.

[11]  L. Dell'Anna,et al.  Wave-vector-dependent spin filtering and spin transport through magnetic barriers in graphene , 2009, 0906.3809.

[12]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[13]  K. Chan,et al.  Equilibrium spin current in ferromagnetic graphene junction , 2009 .

[14]  L. Falkovsky Screening in gated bilayer graphene , 2009, 0905.1765.

[15]  A. Morpurgo,et al.  Double-gated graphene-based devices , 2009, 0905.1221.

[16]  F. Peeters,et al.  Bilayer graphene with single and multiple electrostatic barriers: Band structure and transmission , 2009, 1101.3930.

[17]  Yu-qiang Ma,et al.  Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  F. Zhai,et al.  Effect of an in-plane magnetic field on the spin transport through a Rashba superlattice , 2009 .

[19]  F. Peeters,et al.  Tunneling, conductance, and wavevector filtering through magnetic barriers in bilayer graphene , 2009 .

[20]  J. Nilsson,et al.  Bound states and magnetic field-induced valley splitting in gate-tunable graphene quantum dots , 2008, 0810.0419.

[21]  Baigeng Wang,et al.  Pumped spin and charge currents from applying a microwave field to a quantum dot between two magnetic leads , 2008 .

[22]  C. Bai,et al.  Large oscillating tunnel magnetoresistance in ferromagnetic graphene single tunnel junction , 2008 .

[23]  B. Halperin,et al.  Spin Polarized Current Generation from Quantum Dots without Magnetic Fields , 2008, 0801.2592.

[24]  T. Yokoyama Controllable spin transport in ferromagnetic graphene junctions , 2008, 0801.1552.

[25]  N. M. R. Peres,et al.  Electronic properties of bilayer and multilayer graphene , 2007, 0712.3259.

[26]  D. Huertas-Hernando,et al.  Spin transport in proximity-induced ferromagnetic graphene , 2007, 0707.3976.

[27]  Chao Zhang,et al.  Enhancement of polarization in a spin-orbit coupling quantum wire with a constriction , 2007, 0709.0203.

[28]  C. Na'on,et al.  Quantum pump effect in one-dimensional systems of Dirac fermions , 2007, 0704.2329.

[29]  Oleg V. Yazyev,et al.  Defect-induced magnetism in graphene , 2007 .

[30]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[31]  G. Burkard,et al.  Spin qubits in graphene quantum dots , 2006, cond-mat/0611252.

[32]  F. Guinea,et al.  Transmission through a biased graphene bilayer barrier , 2006, cond-mat/0607343.

[33]  X. Qi,et al.  Spin-orbit gap of graphene: First-principles calculations , 2006, cond-mat/0606350.

[34]  S. Louie,et al.  Half-metallic graphene nanoribbons , 2006, Nature.

[35]  J. Barnaś,et al.  Exchange interaction of magnetic impurities in graphene , 2006, cond-mat/0610658.

[36]  E. McCann Interlayer asymmetry gap in the electronic band structure of bilayer graphene , 2006, cond-mat/0608221.

[37]  F. Guinea,et al.  Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps , 2006, cond-mat/0606580.

[38]  J. E. Hill,et al.  Intrinsic and Rashba spin-orbit interactions in graphene sheets , 2006, cond-mat/0606504.

[39]  F. Romeo,et al.  Pure spin currents generation in magnetic tunnel junctions by means of adiabatic quantum pumping , 2006 .

[40]  K. Novoselov,et al.  Chiral tunnelling and the Klein paradox in graphene , 2006, cond-mat/0604323.

[41]  K. Xia,et al.  Transport of spin-polarized electrons in a magnetic superlattice , 2006 .

[42]  K. S. Chan,et al.  Equilibrium spin current through tunneling junctions , 2005, cond-mat/0512430.

[43]  Hongqi Xu,et al.  Generation of spin polarization in two-terminal electron waveguides by spin-orbit interaction and magnetic field modulations , 2005 .

[44]  F. Guinea,et al.  Coulomb Interactions and Ferromagnetism in Pure and Doped Graphene , 2005, cond-mat/0507061.

[45]  F. Guinea,et al.  Local defects and ferromagnetism in graphene layers , 2005, cond-mat/0505557.

[46]  M. Blaauboer,et al.  Spin pump turnstile: Parametric pumping of a spin-polarized current through a nearly closed quantum dot , 2004, cond-mat/0411193.

[47]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[48]  Baigeng Wang,et al.  Heat current and spin current through a carbon-nanotube-based molecular quantum pump , 2004 .

[49]  T. P. Pareek Pure spin currents and the associated electrical voltage. , 2003, Physical review letters.

[50]  Colin Benjamin,et al.  Quantum spin pumping with adiabatically modulated magnetic barriers , 2003, quant-ph/0303176.

[51]  S. K. Watson,et al.  Experimental realization of a quantum spin pump. , 2003, Physical review letters.

[52]  T. Aono Adiabatic spin pumping through a quantum dot with a single orbital level , 2002, cond-mat/0205395.

[53]  M. Buttiker,et al.  Dissipation and noise in adiabatic quantum pumps , 2002, cond-mat/0201259.

[54]  E. Mucciolo,et al.  Adiabatic quantum pump of spin-polarized current. , 2001, Physical review letters.

[55]  P. Brouwer Scattering approach to parametric pumping , 1998, cond-mat/9808347.

[56]  Skolnick,et al.  Experimental determination of Gamma -X intervalley transfer mechanisms in GaAs/AlAs heterostructures. , 1996, Physical review. B, Condensed matter.

[57]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[58]  Jerry R. Meyer,et al.  Type‐II quantum‐well lasers for the mid‐wavelength infrared , 1995 .