Sensitive Broadband ELF/VLF Radio Reception With the AWESOME Instrument

A new instrument has been developed and deployed for sensitive reception of broadband extremely low frequency (ELF) (defined in this paper as 300-3000 Hz) and very low frequency (VLF) (defined in this paper as 3-30 kHz) radio signals from natural and man-made sources, based on designs used for decades at Stanford University. We describe the performance characteristics of the Atmospheric Weather Electromagnetic System for Observation, Modeling, and Education (AWESOME) instrument, including sensitivity, frequency and phase response, timing accuracy, and cross modulation. We also describe a broad range of scientific applications that use AWESOME ELF/VLF data involving measurements of both subionospherically and magnetospherically propagating signals.

[1]  Umran S. Inan,et al.  Scattering pattern of lightning‐induced ionospheric disturbances associated with early/fast VLF events , 1999 .

[2]  Umran S. Inan,et al.  A quantitative comparison of lightning-induced electron precipitation and VLF signal perturbations , 2007 .

[3]  Umran S. Inan,et al.  Multi‐hop whistler‐mode ELF/VLF signals and triggered emissions excited by the HAARP HF heater , 2004 .

[4]  T. F. Bell,et al.  VLF Antarctic antenna: Impedance and efficiency , 1974 .

[5]  Neil R. Thomson,et al.  Whistler mode signals: Spectrographic group delays , 1981 .

[6]  Antony Fraser-Smith A Global Survey of ELF/VLF Radio Noise , 2002 .

[7]  Philip H. Scherrer,et al.  Distributing space weather monitoring instruments and educational materials worldwide for IHY 2007: The AWESOME and SID project , 2008 .

[8]  Umran S. Inan,et al.  Magnetic Sensor Design for Femtotesla Low-Frequency Signals , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Umran S. Inan,et al.  VLF signatures of ionospheric disturbances associated with sprites , 1995 .

[10]  Umran S. Inan,et al.  Multistation observations of ELF/VLF whistler mode chorus , 2008 .

[11]  Umran S. Inan,et al.  VLF remote sensing of high‐energy auroral particle precipitation , 1997 .

[12]  Robert Marshall,et al.  Fast Photometric Imaging Using Orthogonal Linear Arrays , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Umran S. Inan,et al.  Rapidly moving sources of upper band ELF/VLF chorus near the magnetic equator , 2003 .

[14]  U. Inan,et al.  Long‐range tracking of thunderstorms using sferic measurements , 2002 .

[15]  Peter Stubbe,et al.  The diffraction of VLF radio waves by a patch of ionosphere illuminated by a powerful HF transmitter , 1985 .

[16]  Umran S. Inan,et al.  Localization of individual lightning discharges via directional and temporal triangulation of sferic measurements at two distant sites , 2004 .

[17]  R. Helliwell,et al.  VLF wave injection into the magnetosphere from Siple Station, Antarctica , 1974 .

[18]  Umran S. Inan,et al.  Magnetospheric amplification and emission triggering by ELF/VLF waves injected by the 3.6 MW HAARP ionospheric heater , 2008 .

[19]  R. Helliwell,et al.  VLF wave-injection experiments from Siple Station, Antarctica , 1987 .

[20]  A.C. Fraser-Smith,et al.  The Stanford University ELF/VLF Radiometer Project: Measurement of the Global Distribution of ELF/VLF Electromagnetic Noise , 1985, 1985 IEEE International Symposium on Electromagnetic Compatibility.

[21]  H. Christian Global Frequency and Distribution of Lightning as Observed From Space , 2001 .

[22]  G. J. Fishman,et al.  Observation of an ionospheric disturbance caused by a gamma-ray burst , 1988, Nature.

[23]  Umran S. Inan,et al.  Orientation of the HAARP ELF ionospheric dipole and the auroral electrojet , 2008 .

[24]  K. Davies,et al.  Observations of D-Region Modifications at Low and Very Low Frequencies , 1972, Nature.

[25]  Umran S. Inan,et al.  ELF waves generated by modulated HF heating of the auroral electrojet and observed at a ground distance of ∼4400 km , 2007 .

[26]  M. Uman,et al.  The Lightning Discharge , 1987 .

[27]  Umran S. Inan,et al.  Geometric modulation: A more effective method of steerable ELF/VLF wave generation with continuous HF heating of the lower ionosphere , 2008 .

[28]  A. Mitra,et al.  Ionospheric effects of solar flares , 1974 .

[29]  Umran S. Inan,et al.  Subionospheric early VLF signal perturbations observed in one‐to‐one association with sprites , 2004 .

[30]  Craig J. Rodger,et al.  Sunrise effects on VLF signals propagating over a long north‐south path , 1999 .

[31]  Umran S. Inan,et al.  VLF heating of the lower ionosphere , 1990 .

[32]  Douglas H. Werner,et al.  Steerable ELF/VLF radiation produced by an array of ionospheric dipoles generated from HF heating , 1987 .

[33]  Sergei Sazhin,et al.  Mid-latitude and plasmaspheric hiss: A review , 1992 .

[34]  R. Helliwell,et al.  Whistlers and Related Ionospheric Phenomena , 1965 .

[35]  Michael T. Rietveld,et al.  ELF and VLF wave generation by modulated HF heating of the current carrying lower ionosphere , 1982 .

[36]  Umran S. Inan,et al.  Subionospheric VLF observations of transmitter‐induced precipitation of inner radiation belt electrons , 2007 .

[37]  Umran S. Inan,et al.  Terrestrial gamma ray flashes and lightning discharges , 2006 .

[38]  Umran S. Inan,et al.  VLF and LF signatures of mesospheric/lower ionospheric response to lightning discharges , 1996 .

[39]  Umran S. Inan,et al.  Terrestrial gamma ray flashes observed aboard the Compton Gamma Ray Observatory/Burst and Transient Source Experiment and ELF/VLF radio atmospherics , 2006 .

[40]  Matthew Angling,et al.  Total solar eclipse effects on VLF signals: Observations and modeling , 2001 .

[41]  G. G. Getmantsev,et al.  Combination frequencies in the interaction between high-power short-wave radiation and ionospheric plasma , 1974 .

[42]  R. C. Moore,et al.  Observations of amplitude saturation in ELF/VLF wave generation by modulated HF heating of the auroral electrojet , 2006 .

[43]  H. J. Hagger,et al.  Electromagnetic Waves in Stratified Media , 1996 .

[44]  Umran S. Inan,et al.  On the association of terrestrial gamma‐ray bursts with lightning and implications for sprites , 1996 .

[45]  D. A. Chrissan,et al.  Seasonal variations of globally measured ELF/VLF radio noise , 1996 .

[46]  Umran S. Inan,et al.  Interaction with the lower ionosphere of electromagnetic pulses from lightning: Heating, attachment, and ionization , 1993 .

[47]  Umran S. Inan,et al.  Saturation effects in the VLF-triggered emission process , 2008 .

[48]  Umran S. Inan,et al.  Ionospheric D region remote sensing using VLF radio atmospherics , 1998 .

[49]  R. P. Lin,et al.  Terrestrial Gamma-Ray Flashes Observed up to 20 MeV , 2005, Science.

[50]  Umran S. Inan,et al.  Ionization of the lower ionosphere by γ‐rays from a Magnetar: Detection of a low energy (3–10 keV) component , 1999 .

[51]  Ralph K. Potter,et al.  Analysis of Audio-Frequency Atmospherics , 1951, Proceedings of the IRE.

[52]  Umran S. Inan,et al.  Electron density changes in the nighttime D region due to heating by very-low-frequency transmitters , 1994 .

[53]  J. D. McNeill,et al.  7. Geological Mapping Using VLF Radio Fields , 1991 .

[54]  Umran S. Inan,et al.  Path-dependent properties of subionospheric VLF amplitude and phase perturbations associated with lightning , 1990 .

[55]  Craig J. Rodger,et al.  Radiation belt electron precipitation into the atmosphere: Recovery from a geomagnetic storm , 2007, Journal of Geophysical Research: Space Physics.

[56]  Craig J. Rodger,et al.  Investigating seismoionospheric effects on a long subionospheric path , 1999 .

[57]  K. G. Budden The Wave-guide mode theory of wave propagation , 1963 .

[58]  C. Kouveliotou,et al.  Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin , 1994, Science.

[59]  E. W. Paschal,et al.  Phase Measurements of Very Low Frequency Signals from the Magnetosphere. , 1988 .

[60]  D. Jones,et al.  Observations on the Propagation Constant of the EarthIonosphere Waveguide in the Frequency Band 8 c/s to 16 kc/s† , 1966 .