More accurate results for two-dimensional heat equation with Neumann’s and non-classical boundary conditions

In this article, recently proposed spectral meshless radial point interpolation (SMRPI) method is applied to the two-dimensional diffusion equation with a mixed group of Dirichlet’s and Neumann’s and non-classical boundary conditions. The present method is based on meshless methods and benefits from spectral collocation ideas. The point interpolation method with the help of radial basis functions is proposed to construct shape functions which have Kronecker delta function property. Evaluation of high-order derivatives is possible by constructing and using operational matrices. The computational cost of the method is modest due to using strong form equation and collocation approach. A comparison study of the efficiency and accuracy of the present method and other meshless methods is given by applying on mentioned diffusion equation. Stability and convergence of this meshless approach are discussed and theoretically proven. Convergence studies in the numerical examples show that SMRPI method possesses excellent rates of convergence.

[1]  Mehdi Dehghan,et al.  Numerical solution of two‐dimensional parabolic equation subject to nonstandard boundary specifications using the pseudospectral Legendre method , 2006 .

[2]  John van der Hoek,et al.  Diffusion subject to the specification of mass , 1986 .

[3]  S. Atluri,et al.  Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving Nonlinear Problems with Large Deformations and Rotations , 2005 .

[4]  Karl Kunisch,et al.  A reaction-diffusion system arising in modelling man-environment diseases , 1988 .

[5]  Mehdi Dehghan,et al.  Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM) , 2010, Comput. Phys. Commun..

[6]  Mehdi Dehghan,et al.  Parallel techniques for a boundary value problem with non-classic boundary conditions , 2003, Appl. Math. Comput..

[7]  Saeid Abbasbandy,et al.  A meshfree method for the solution of two-dimensional cubic nonlinear Schrödinger equation , 2013 .

[8]  Mehdi Dehghan,et al.  Fully implicit finite differences methods for two-dimensional diffusion with a non-local boundary condition , 1999 .

[9]  Guirong Liu,et al.  A LOCAL RADIAL POINT INTERPOLATION METHOD (LRPIM) FOR FREE VIBRATION ANALYSES OF 2-D SOLIDS , 2001 .

[10]  李东明,et al.  An improved complex variable element-free Galerkin method for two-dimensional elasticity problems , 2012 .

[11]  Yong Duan,et al.  Coupling three-field formulation and meshless mixed Galerkin methods using radial basis functions , 2010, J. Comput. Appl. Math..

[12]  S. Abbasbandy,et al.  MLPG method for two-dimensional diffusion equation with Neumann's and non-classical boundary conditions , 2011 .

[13]  M. Dehghan Second-order schemes for a boundary value problem with Neumann's boundary conditions , 2002 .

[14]  Saeid Abbasbandy,et al.  Local integration of 2-D fractional telegraph equation via moving least squares approximation , 2015 .

[15]  Carsten Franke,et al.  Solving partial differential equations by collocation using radial basis functions , 1998, Appl. Math. Comput..

[16]  Satya N. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics , 2000 .

[17]  Elyas Shivanian Local integration of population dynamics via moving least squares approximation , 2015, Engineering with Computers.

[18]  Robert Schaback,et al.  Stable and Convergent Unsymmetric Meshless Collocation Methods , 2008, SIAM J. Numer. Anal..

[19]  Guirong Liu,et al.  Point interpolation method based on local residual formulation using radial basis functions , 2002 .

[20]  Guirong Liu,et al.  A point interpolation meshless method based on radial basis functions , 2002 .

[21]  M. Dehghan,et al.  Meshless Local Petrov--Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity , 2009 .

[22]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[23]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[24]  S. Atluri,et al.  The Meshless Local Petrov-Galerkin (MLPG) Method: A Simple \& Less-costly Alternative to the Finite Element and Boundary Element Methods , 2002 .

[25]  Elyas Shivanian,et al.  Meshless local Petrov–Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation , 2015 .

[26]  B. Šarler,et al.  Solution of a low Prandtl number natural convection benchmark by a local meshless method , 2013 .

[27]  Mehdi Dehghan,et al.  A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis , 2013, J. Comput. Appl. Math..

[28]  Elyas Shivanian,et al.  A new spectral meshless radial point interpolation (SMRPI) method: A well-behaved alternative to the meshless weak forms , 2015 .

[29]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..

[30]  William Alan Day,et al.  Extensions of a property of the heat equation to linear thermoelasticity and other theories , 1982 .

[31]  Elyas Shivanian,et al.  Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics , 2013 .

[32]  Mohammad Shekarchi,et al.  A Multiresolution Prewavelet-Based Adaptive Refinement Scheme for RBF Approximations of Nearly Singular Problems , 2009 .

[33]  Yumin Cheng,et al.  The complex variable element-free Galerkin (CVEFG) method for elasto-plasticity problems , 2011 .

[34]  Wen Chen,et al.  Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation , 2015 .

[35]  Guirong Liu,et al.  On the optimal shape parameters of radial basis functions used for 2-D meshless methods , 2002 .

[36]  Tobin A. Driscoll,et al.  Radial Basis Function Interpolation on Irregular Domain through Conformal Transplantation , 2010, J. Sci. Comput..

[37]  Mehdi Dehghan,et al.  Numerical solution of the three‐dimensional parabolic equation with an integral condition , 2002 .

[38]  R. Trobec,et al.  Comparison of local weak and strong form meshless methods for 2-D diffusion equation , 2012 .

[39]  Elyas Shivanian,et al.  Meshless local radial point interpolation (MLRPI) on the telegraph equation with purely integral conditions , 2014 .

[40]  Roman Trobec,et al.  Computational complexity and parallelization of the meshless local Petrov-Galerkin method , 2009 .

[41]  S. Jakobsson,et al.  Rational radial basis function interpolation with applications to antenna design , 2009, J. Comput. Appl. Math..

[42]  E. Shivanian On the convergence analysis, stability, and implementation of meshless local radial point interpolation on a class of three‐dimensional wave equations , 2016 .

[43]  Mohammad Shekarchi,et al.  A Fast Adaptive Wavelet scheme in RBF Collocation for nearly singular potential PDEs , 2008 .

[44]  Elyas Shivanian,et al.  Nonlinear fractional integro-differential reaction-diffusion equation via radial basis functions , 2015, The European Physical Journal Plus.

[45]  Giuseppe Gambolati,et al.  A comparison of numerical integration rules for the meshless local Petrov–Galerkin method , 2007, Numerical Algorithms.

[46]  Holger Wendland,et al.  Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree , 1998 .

[47]  Baodong Dai,et al.  AN IMPROVED LOCAL BOUNDARY INTEGRAL EQUATION METHOD FOR TWO-DIMENSIONAL POTENTIAL PROBLEMS , 2010 .

[48]  Hojatollah Adibi,et al.  A meshless discrete Galerkin (MDG) method for the numerical solution of integral equations with logarithmic kernels , 2014, J. Comput. Appl. Math..

[49]  T. Belytschko,et al.  Element-free galerkin methods for static and dynamic fracture , 1995 .

[50]  Václav Skala,et al.  A two-level approach to implicit surface modeling with compactly supported radial basis functions , 2011, Eng. Comput..

[51]  Božidar Šarler,et al.  From Global to Local Radial Basis Function Collocation Method for Transport Phenomena , 2007 .

[52]  S. Abbasbandy,et al.  Meshless simulations of the two-dimensional fractional-time convection–diffusion–reaction equations , 2012 .

[53]  E. Ozturk,et al.  Nonlinear intersubband absorption and refractive index change in n-type δ-doped GaAs for different donor distributions , 2015 .

[54]  Mehdi Dehghan,et al.  A meshless local Petrov-Galerkin method for the time-dependent Maxwell equations , 2014, J. Comput. Appl. Math..

[55]  Mehdi Dehghan,et al.  Numerical approximations for solving a time-dependent partial differential equation with non-classical specification on four boundaries , 2005, Appl. Math. Comput..

[56]  Mehdi Dehghan,et al.  A new ADI technique for two-dimensional parabolic equation with an integral condition☆ , 2002 .

[57]  Gui-Rong Liu,et al.  An Introduction to Meshfree Methods and Their Programming , 2005 .

[58]  Saeid Abbasbandy,et al.  Comparison of meshless local weak and strong forms based on particular solutions for a non-classical 2-D diffusion model , 2014 .

[59]  Satya N. Atluri,et al.  New concepts in meshless methods , 2000 .

[60]  Mehdi Dehghan,et al.  On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation , 2005 .

[61]  Yong Duan,et al.  A meshless Galerkin method for Dirichlet problems using radial basis functions , 2006 .

[62]  Vladimir Sladek,et al.  A local integral equation formulation to solve coupled nonlinear reaction–diffusion equations by using moving least square approximation , 2013 .

[63]  Mehdi Dehghan,et al.  Fully explicit finite-difference methods for two-dimensional diffusion with an integral condition , 2002 .

[64]  Edward H. Twizell,et al.  Efficient parallel algorithm for the two-dimensional diffusion equation subject to specification of mass , 1997, Int. J. Comput. Math..

[65]  M. Dehghan A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications , 2006 .

[66]  Elyas Shivanian,et al.  Analysis of meshless local and spectral meshless radial point interpolation (MLRPI and SMRPI) on 3-D nonlinear wave equations , 2014 .

[67]  Mehdi Dehghan,et al.  The meshless local Petrov–Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation , 2008 .

[68]  M. Dehghan The one-dimensional heat equation subject to a boundary integral specification , 2007 .

[69]  S. Atluri The meshless method (MLPG) for domain & BIE discretizations , 2004 .

[70]  R. Schaback,et al.  Results on meshless collocation techniques , 2006 .

[71]  S. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) method , 2002 .

[72]  M. Dehghan Efficient techniques for the second-order parabolic equation subject to nonlocal specifications , 2005 .

[73]  E. J. Kansa,et al.  Application of the Multiquadric Method for Numerical Solution of Elliptic Partial Differential Equations , 2022 .

[74]  Saeid Abbasbandy,et al.  Numerical analysis of a mathematical model for capillary formation in tumor angiogenesis using a meshfree method based on the radial basis function , 2012 .

[75]  Mehdi Dehghan,et al.  On the solution of the non-local parabolic partial differential equations via radial basis functions , 2009 .

[76]  Saeed Kazem,et al.  Radial basis functions method for solving of a non-local boundary value problem with Neumann’s boundary conditions , 2012 .

[77]  Yanping Lin,et al.  A finite-difference solution to an inverse problem for determining a control function in a parabolic partial differential equation , 1989 .

[78]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[79]  Yanping Lin,et al.  The solution of the diffusion equation in two space variables subject to the specification of mass , 1993 .

[80]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[81]  Mehdi Dehghan,et al.  Meshless local Petrov-Galerkin (MLPG) approximation to the two dimensional sine-Gordon equation , 2010, J. Comput. Appl. Math..