Rough-Neuro Computing

We outline a rough-neuro computing model as a basis for granular computing. Our approach is based on rough sets, rough mereology and information granule calculus.

[1]  Lech Polkowski,et al.  Rough Sets in Knowledge Discovery 2 , 1998 .

[2]  Shusaku Tsumoto,et al.  Information Granules for Spatial Reasoning , 2001, PAKDD.

[3]  Janusz Kacprzyk,et al.  Computing with Words in Information/Intelligent Systems 1 , 1999 .

[4]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[5]  Andrzej Skowron,et al.  Towards Discovery of Information Granules , 1999, PKDD.

[6]  Tsau Young Lin,et al.  Granular Computing on Binary Relations , 2002, Rough Sets and Current Trends in Computing.

[7]  Andrzej Skowron,et al.  Rough mereology in information systems. A case study: qualitative spatial reasoning , 2000 .

[8]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[9]  Andrzej Skowron,et al.  Rough Mereological Foundatins for Design, Analysis, Synthesis, and Control in Distributed Systems , 1998, Inf. Sci..

[10]  A. Skowron,et al.  Towards adaptive calculus of granules , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[11]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[12]  Z. Pawlak,et al.  Reasoning about Knowledge , 1991 .

[13]  Andrzej Skowron,et al.  Rough mereology: A new paradigm for approximate reasoning , 1996, Int. J. Approx. Reason..

[14]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[15]  James F. Peters,et al.  Classifying Faults in High Voltage Power Systems: A Rough-Fuzzy Neural Computational Approach , 1999, RSFDGrC.