Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 kyr

[1] Stable isotope data from eastern equatorial Pacific (EEP) core TR163-19 (2°15′N, 90°57′W, 2348 m) are presented for the surface-dwelling foraminifers Globigerinoides ruber and G. sacculifer and thermocline-dwelling Globorotalia menardii and Neogloboquadrina dutertrei. Using species-specific normalization factors derived from experimental and plankton tow data, we reconstruct a 360 kyr record of water column hydrography across the past three glacial cycles. We demonstrate that G. ruber maintains a mixed layer habitat throughout the entire record, while G. sacculifer records a mixture of thermocline and mixed layer conditions and G. menardii and N. dutertrei record thermocline properties. We conclude that G. sacculifer is not appropriate for paleoceanographic applications in regions with steep vertical hydrographic gradients. Results suggest that this region of the EEP had a thicker mixed layer and deeper δ13CDIC boundary between the surface and equatorial undercurrent during the last two glacial periods. A shift in N. dutertrei and G. sacculifer geochemistry prior to ∼185 kyr suggests water column structure and chemocline gradients changed, possibly due to a shift in the position of the undercurrent relative to this site. The timing and magnitude of glacial-interglacial δ13C variations between species indicates that near-surface carbon chemistry is controlled by changes in productivity, atmospheric circulation, and advected intermediate water sources north of the Antarctic polar front. These results demonstrate that when properly calibrated for species differences, multispecies geochemical data sets can be invaluable for reconstructing water column structure and properties in the past.

[1]  C. Charles,et al.  Changes in the mode of Southern Ocean circulation over the last glacial cycle revealed by foraminiferal stable isotopic variability , 2002 .

[2]  Athanasios Koutavas,et al.  El Niño-Like Pattern in Ice Age Tropical Pacific Sea Surface Temperature , 2002, Science.

[3]  R. Thunell,et al.  Super ENSO and Global Climate Oscillations at Millennial Time Scales , 2002, Science.

[4]  Geoffrey O. Seltzer,et al.  Early Warming of Tropical South America at the Last Glacial-Interglacial Transition , 2002, Science.

[5]  D. Lea,et al.  The Cause of Carbon Isotope Minimum Events on Glacial Terminations , 2002, Science.

[6]  D. Lea,et al.  Core top calibration of Mg/Ca in tropical foraminifera: Refining paleotemperature estimation , 2002 .

[7]  A. Mix,et al.  Sea-surface temperature estimates in the Southeast Pacific based on planktonic foraminiferal species; modern calibration and Last Glacial Maximum , 2002 .

[8]  P. Loubere Nutrient and oceanographic changes in the Eastern Equatorial Pacific from the last full Glacial to the Present , 2001 .

[9]  B. Stephens,et al.  Erratum: ``Antarctic sea ice and the control of Pleistocene climate instability'' , 2001 .

[10]  A. Broccoli,et al.  Remote forcing at the Last Glacial Maximum in the tropical Pacific Ocean , 2001 .

[11]  E. Boyle,et al.  Glacial/interglacial variations in atmospheric carbon dioxide , 2000, Nature.

[12]  D. Lea,et al.  Climate impact of late quaternary equatorial pacific sea surface temperature variations , 2000, Science.

[13]  P. Loubere Marine control of biological production in the eastern equatorial Pacific Ocean , 2000, Nature.

[14]  A. Ravelo,et al.  RECONSTRUCTIONS OF UPWELLING, PRODUCTIVITY, AND PHOTIC ZONE DEPTH IN THE EASTERN EQUATORIAL PACIFIC OCEAN USING PLANKTONIC FORAMINIFERAL STABLE ISOTOPES AND ABUNDANCES , 2000 .

[15]  C. Laj,et al.  Foraminiferal responses to major Pleistocene paleoceanographic changes in the southern South China Sea , 2000 .

[16]  L. Peterson,et al.  Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578,000 years: Results from Al/Ti and K/Al , 2000 .

[17]  D. Lea,et al.  Temperature influence on the carbon isotopic composition of Globigerina bulloides and Orbulina universa (planktonic foraminifera) , 2000 .

[18]  B. Stephens,et al.  The influence of Antarctic sea ice on glacial–interglacial CO 2 variations , 2000, Nature.

[19]  R. Thunell,et al.  Sea-surface temperature anomalies associated with the 1997-1998 El Niño recorded in the oxygen isotope composition of planktonic foraminifera , 1999 .

[20]  P. Loubere A multiproxy reconstruction of biological productivity and oceanography in the eastern equatorial Pacific for the past 30,000 years , 1999 .

[21]  D. Lea,et al.  Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing , 1999 .

[22]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[23]  L. Sautter Morphologic and stable isotopic variability within the planktic foraminiferal genus Neogloboquadrina , 1998 .

[24]  F. Millero,et al.  Carbonate system in the waters near the Galapagos Islands , 1998 .

[25]  P. Chu,et al.  Circulation in the Archipilago de Coln (Galapagos Islands), November, 1993 , 1998 .

[26]  A. Mix,et al.  Living planktic foraminifera in the central tropical Pacific Ocean: articulating the equatorial `cold tongue' during La Niña, 1992 , 1998 .

[27]  Jelle Bijma,et al.  Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations , 1998 .

[28]  Jelle Bijma,et al.  Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes , 1997, Nature.

[29]  D. Sigman,et al.  Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period , 1997, Nature.

[30]  R F Weiss,et al.  Global air-sea flux of CO2: an estimate based on measurements of sea-air pCO2 difference. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[31]  C. Charles,et al.  Regional differences in Quaternary subantarctic nutrient cycling: Link to intermediate and deep water ventilation , 1997 .

[32]  A. Mix,et al.  Spatial and temporal oceanographic variability of the eastern equatorial Pacific during the Late Pleistocene: Evidence from radiolaria microfossils , 1997 .

[33]  A. Ravelo,et al.  Tropical Pacific Ocean thermocline depth reconstructions for the Last Glacial Maximum , 1997 .

[34]  W. Broecker,et al.  Changes in pH in the eastern equatorial Pacific across stage 5–6 boundary based on boron isotopes in foraminifera , 1997 .

[35]  A. Mix,et al.  Deep-dwelling planktonic foraminifera of the northeastern Pacific Ocean reveal environmental control of oxygen and carbon isotopic disequilibria , 1996 .

[36]  D. Lea,et al.  Experimental determination of stable isotope variability in Globigerina bulloides: implications for paleoceanographic reconstructions , 1996 .

[37]  C. Hemleben,et al.  Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures , 1996 .

[38]  J. Farrell,et al.  Glacialá¤-interglacial changes in nutrient utilization in the equatorial Pacific Ocean , 1995, Nature.

[39]  G. P. Lohmann A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution , 1995 .

[40]  J. Hayes,et al.  Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years. , 1994, Paleoceanography.

[41]  S. Levitus,et al.  Interannual Variability of Temperature at a Depth of 125 Meters in the North Atlantic Ocean , 1994, Science.

[42]  Timothy P. Boyer,et al.  World Ocean Atlas 1994. Volume 4. Temperature , 1994 .

[43]  R. Fairbanks,et al.  Glacial‐interglacial history of Antarctic Intermediate Water: Relative strengths of Antarctic versus Indian Ocean sources , 1994 .

[44]  J. Jouzel,et al.  A 135,000‐year Vostok‐Specmap Common temporal framework , 1993 .

[45]  D. Lea,et al.  Intraspecific stable isotope variability in the planktic foraminiferaGlobigerinoides sacculifer: Results from laboratory experiments , 1993 .

[46]  R. Fairbanks,et al.  Oxygen Isotopic Composition of Multiple Species of Planktonic Foraminifera: Recorders of the Modern Photic Zone Temperature Gradient , 1992 .

[47]  H. Spero Do planktic foraminifera accurately record shifts in the carbon isotopic composition of seawater ΣCO2 , 1992 .

[48]  Richard G. Fairbanks,et al.  Evidence from Southern Ocean sediments for the effect of North Atlantic deep-water flux on climate , 1992, Nature.

[49]  B. Nielsen,et al.  Timing of Late Quaternary productivity pulses in the Panama Basin and implications for atmospheric CO2 , 1991 .

[50]  W. Broecker,et al.  The Peru Upwelling and the Ventilation of the South Pacific Thermocline , 1991 .

[51]  A. Mix,et al.  Carbon 13 in Pacific deep and intermediate waters, 0-370 ka : implications for ocean circulation and Pleistocene CO2 , 1991 .

[52]  R. Fairbanks,et al.  Reconstructing tropical Atlantic hydrography using planktontic foraminifera and an ocean model , 1990 .

[53]  I. Fung,et al.  Observational Contrains on the Global Atmospheric Co2 Budget , 1990, Science.

[54]  W. G. Deuser,et al.  Seasonally abundant planktonic Foraminifera of the Sargasso Sea: succession, deep water fluxes, isotopic compositions, and paleoceanographic implications , 1989 .

[55]  R. Fairbanks,et al.  Carbon isotope composition of tropical surface water during the past 22,000 years , 1989 .

[56]  DOUGLAS F. Williams,et al.  Extracting environmental information from planktonic foraminiferal δ13C data , 1988, Nature.

[57]  M. D. Gastrich ULTRASTRUCTURE OF A NEW INTRACELLULAR SYMBIOTIC ALGA FOUND WITHIN PLANKTONIC FORAMINIFERA 1 , 1987 .

[58]  Thomas J. Crowley,et al.  The δ13C of equatorial Atlantic surface waters: Implications for Ice Age pCO2 levels , 1987 .

[59]  F. Chavez,et al.  An estimate of new production in the equatorial Pacific , 1987 .

[60]  D. Caron,et al.  Effects of temperature and salinity on the growth and survival of the planktonic foraminifer Globigerinoides sacculifer , 1987, Journal of the Marine Biological Association of the United Kingdom.

[61]  J. Duplessy,et al.  Carbon and oxygen isotopic composition of planktonic foraminifera from laboratory culture, plankton tows and Recent sediment; implications for the reconstruction of paleoclimatic conditions and of the global carbon cycle , 1985 .

[62]  L. Codispoti,et al.  Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific ocean , 1985 .

[63]  R. Thunell,et al.  Seasonal variation in the flux of planktonic foraminifera: time series sediment trap results from the Panama Basin , 1983 .

[64]  R. Thunell,et al.  Seasonal changes in the isotopic composition of planktonic foraminifera collected in Panama Basin sediment traps , 1983 .

[65]  J. Erez,et al.  Experimental paleotemperature equation for planktonic foraminifera , 1983 .

[66]  O. Anderson,et al.  Effects of symbiont elimination and reinfection on the life processes of the planktonic foraminifer Globigerinoides sacculifer , 1982 .

[67]  P. Wiebe,et al.  Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin , 1982, Nature.

[68]  D. Caron,et al.  Effects of variations in light intensity on life processes of the planktonic foraminifer Globigerinoides sacculifer in laboratory culture , 1982, Journal of the Marine Biological Association of the United Kingdom.

[69]  P. Blanc,et al.  Oxygen-18 Enrichment of Planktonic Foraminifera Due to Gametogenic Calcification Below the Euphotic Zone , 1981, Science.

[70]  P. Wiebe,et al.  Foraminifera and Chlorophyll Maximum: Vertical Distribution, Seasonal Succession, and Paleoceanographic Significance , 1980, Science.

[71]  P. Wiebe,et al.  Vertical Distribution and Isotopic Composition of Living Planktonic Foraminifera in the Western North Atlantic , 1980, Science.

[72]  C. Hemleben,et al.  Laboratory and field observations of living planktonic foraminifera , 1977 .

[73]  P. Kroopnick The dissolved O2-CO2-13C system in the eastern equatorial pacific , 1974 .

[74]  P. Martin,et al.  Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core , 2002 .

[75]  D. Archer,et al.  Implications of a Carbonate Ion Effect on Shell Carbon and Oxygen Isotopes for Glacial Ocean Conditions , 1999 .

[76]  D. Lea,et al.  Deconvolving Glacial Ocean Carbonate Chemistry from the Planktonic Foraminifera Carbon Isotope Record , 1999 .

[77]  H. Niebler,et al.  Oxygen Isotope Values of Planktic Foraminifera: A Tool for the Reconstruction of Surface Water Stratification , 1999 .

[78]  H. Spero Life History and Stable Isotope Geochemistry of Planktonic Foraminifera , 1998 .

[79]  D. Kroon,et al.  Size and upwelling control of the stable isotope composition of Neogloboquadrina dutertrei (d'Orbigny), Globigerinoides ruber (d'Orbigny) and Globigerina bulloides d'Orbigny; examples from the Panama Basin and Arabian Sea , 1995 .

[80]  K. Billups,et al.  Relationship between shell size, thickness and stable isotopes in individual planktonic foraminifera from two Equatorial Atlantic cores , 1995 .

[81]  C. Hemleben,et al.  Foraminiferal Population Dynamics And Stable Carbon Isotopes , 1994 .

[82]  R. Schneider,et al.  Strong deglacial minimum in the δ13C record from planktonic foraminifera in the Benguela upwelling region: palaeoceanographic signal or early diagenetic imprint? , 1992, Geological Society, London, Special Publications.

[83]  C. Romanek,et al.  Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate , 1992 .

[84]  A. Mix,et al.  Carbon isotope records from pacific surface waters and atmospheric carbon dioxide , 1992 .

[85]  W. G. Deuser Seasonal variations in isotopic composition and deep-water fluxes of the tests of perennially abundant planktonic foraminifera of the Sargasso Sea; results from sediment-trap collections and their paleoceanographic significance , 1987 .

[86]  R. Lukas The termination of the Equatorial Undercurrent in the eastern Pacific , 1986 .

[87]  T. Pedersen Increased productivity in the eastern equatorial Pacific during the last glacial maximum (19,000 to 14,000 yr B.P) , 1983 .

[88]  A. Bé Gametogenic calcification in a spinose planktonic foraminifer, Globigerinoides sacculifer (Brady) , 1980 .

[89]  C. Hemleben,et al.  Test morphology, organic layers and chamber formation of the planktonic foraminifer Globorotalia menardii (d'Orbigny) , 1977 .