Bethe-Sommerfeld conjecture for periodic operators with strong perturbations

We consider a periodic self-adjoint pseudo-differential operator H=(−Δ)m+B, m>0, in ℝd which satisfies the following conditions: (i) the symbol of B is smooth in x, and (ii) the perturbation B has order less than 2m. Under these assumptions, we prove that the spectrum of H contains a half-line. This, in particular implies the Bethe-Sommerfeld conjecture for the Schrödinger operator with a periodic magnetic potential in all dimensions.

[1]  Asymptotic formulas for the eigenvalues of a periodic Schrödinger operator and the Bethe-Sommerfeld conjecture , 1987 .

[2]  Rachel J. Steiner,et al.  The spectral theory of periodic differential equations , 1973 .

[3]  V. N. Popov,et al.  Remark on the spectrum structure of the two-dimensional Schrödinger operator with the periodic potential , 1984 .

[4]  Yulia Karpeshina Perturbation series for the Schrödinger operator with a periodic potential near planes of diffraction , 1996 .

[5]  M. M. Skriganov,et al.  Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators , 1987 .

[6]  Bethe–Sommerfeld Conjecture for Pseudodifferential Perturbation , 2008, 0804.3488.

[7]  M. Solomjak,et al.  Spectral Theory of Self-Adjoint Operators in Hilbert Space , 1987 .

[8]  Wolfgang Pauli,et al.  Handbuch der Physik , 1904, Nature.

[9]  Wilhelm Schlag,et al.  Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday , 2007 .

[10]  Tosio Kato Perturbation theory for linear operators , 1966 .

[11]  H. Knörrer,et al.  The perturbatively stable spectrum of a periodic Schrödinger operator , 1990 .

[12]  Asymptotic bounds for spectral bands of periodic Schrödinger operators , 2006 .

[13]  Claudia Baier,et al.  Elektronentheorie der Metalle , 1937, Nature.

[14]  B. Dahlberg,et al.  A remark on two dimensional periodic potentials , 1982 .

[15]  Integrated Density of States for the Periodic Schrödinger Operator in Dimension Two , 2005 .

[16]  B. Helffer,et al.  Asymptotic of the density of states for the Schrödinger operator with periodic electric potential , 1998 .

[17]  P. Kuchment Floquet Theory for Partial Differential Equations , 1993 .

[18]  Asymptotic of the density of states for the Schrödinger operator with periodic electromagnetic potential , 1997 .

[19]  Yulia E. Karpeshina,et al.  Perturbation Theory for the Schrödinger Operator with a Periodic Potential , 1997 .

[20]  Yulia Karpeshina Spectral Properties of the Periodic Magnetic Schrödinger Operator in the High-Energy Region. Two-Dimensional Case , 2004 .

[21]  A. Sobolev,et al.  Lattice Points, Perturbation Theory and the Periodic Polyharmonic Operator , 2001 .

[22]  H. Knörrer,et al.  Perturbatively unstable eigenvalues of a periodic Schrödinger operator , 1991 .

[23]  A. Sobolev,et al.  On the Bethe-Sommerfeld conjecture for the polyharmonic operator , 2001 .

[24]  Alexander V. Sobolev,et al.  Variation of the number of lattice points in large balls , 2005 .

[25]  Av Sobolev Recent results on the Bethe-Sommerfeld conjecture , 2007 .

[26]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[27]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[28]  Leonid Parnovski,et al.  Bethe–Sommerfeld Conjecture , 2008, 0801.3096.

[29]  O. Veliev Perturbation Theory for the Periodic Multidimensional Schrodinger Operator and the Bethe-Sommerfeld Conjecture , 2006, math-ph/0610057.

[30]  M. Skriganov The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential , 1985 .