Bethe-Sommerfeld conjecture for periodic operators with strong perturbations
暂无分享,去创建一个
[1] Asymptotic formulas for the eigenvalues of a periodic Schrödinger operator and the Bethe-Sommerfeld conjecture , 1987 .
[2] Rachel J. Steiner,et al. The spectral theory of periodic differential equations , 1973 .
[3] V. N. Popov,et al. Remark on the spectrum structure of the two-dimensional Schrödinger operator with the periodic potential , 1984 .
[4] Yulia Karpeshina. Perturbation series for the Schrödinger operator with a periodic potential near planes of diffraction , 1996 .
[5] M. M. Skriganov,et al. Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators , 1987 .
[6] Bethe–Sommerfeld Conjecture for Pseudodifferential Perturbation , 2008, 0804.3488.
[7] M. Solomjak,et al. Spectral Theory of Self-Adjoint Operators in Hilbert Space , 1987 .
[8] Wolfgang Pauli,et al. Handbuch der Physik , 1904, Nature.
[9] Wilhelm Schlag,et al. Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday , 2007 .
[10] Tosio Kato. Perturbation theory for linear operators , 1966 .
[11] H. Knörrer,et al. The perturbatively stable spectrum of a periodic Schrödinger operator , 1990 .
[12] Asymptotic bounds for spectral bands of periodic Schrödinger operators , 2006 .
[13] Claudia Baier,et al. Elektronentheorie der Metalle , 1937, Nature.
[14] B. Dahlberg,et al. A remark on two dimensional periodic potentials , 1982 .
[15] Integrated Density of States for the Periodic Schrödinger Operator in Dimension Two , 2005 .
[16] B. Helffer,et al. Asymptotic of the density of states for the Schrödinger operator with periodic electric potential , 1998 .
[17] P. Kuchment. Floquet Theory for Partial Differential Equations , 1993 .
[18] Asymptotic of the density of states for the Schrödinger operator with periodic electromagnetic potential , 1997 .
[19] Yulia E. Karpeshina,et al. Perturbation Theory for the Schrödinger Operator with a Periodic Potential , 1997 .
[20] Yulia Karpeshina. Spectral Properties of the Periodic Magnetic Schrödinger Operator in the High-Energy Region. Two-Dimensional Case , 2004 .
[21] A. Sobolev,et al. Lattice Points, Perturbation Theory and the Periodic Polyharmonic Operator , 2001 .
[22] H. Knörrer,et al. Perturbatively unstable eigenvalues of a periodic Schrödinger operator , 1991 .
[23] A. Sobolev,et al. On the Bethe-Sommerfeld conjecture for the polyharmonic operator , 2001 .
[24] Alexander V. Sobolev,et al. Variation of the number of lattice points in large balls , 2005 .
[25] Av Sobolev. Recent results on the Bethe-Sommerfeld conjecture , 2007 .
[26] C. A. Rogers,et al. An Introduction to the Geometry of Numbers , 1959 .
[27] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[28] Leonid Parnovski,et al. Bethe–Sommerfeld Conjecture , 2008, 0801.3096.
[29] O. Veliev. Perturbation Theory for the Periodic Multidimensional Schrodinger Operator and the Bethe-Sommerfeld Conjecture , 2006, math-ph/0610057.
[30] M. Skriganov. The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential , 1985 .