Convergence of sphingolipid desaturation across over 500 million years of plant evolution

[1]  Michael S. Barker,et al.  Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts , 2020, Nature Plants.

[2]  Sunil Kumar Sahu,et al.  Genomes of early-diverging streptophyte algae shed light on plant terrestrialization , 2019, Nature Plants.

[3]  Huanming Yang,et al.  Genomes of Subaerial Zygnematophyceae Provide Insights into Land Plant Evolution , 2019, Cell.

[4]  Michiel Van Bel,et al.  Insights into the Evolution of Multicellularity from the Sea Lettuce Genome , 2018, Current Biology.

[5]  Michael S. Barker,et al.  Fern genomes elucidate land plant evolution and cyanobacterial symbioses , 2018, Nature Plants.

[6]  C. Delwiche,et al.  The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization , 2018, Cell.

[7]  Richard D. Hayes,et al.  The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. , 2018, The Plant journal : for cell and molecular biology.

[8]  R. Reski Enabling the water-to-land transition , 2018, Nature Plants.

[9]  S. Mongrand,et al.  Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins , 2017, Science.

[10]  R. Haslam,et al.  Lipid remodelling: Unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutrema salsugineum , 2017, Plant science : an international journal of experimental plant biology.

[11]  Christian R. Boehm,et al.  Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome , 2017, Cell.

[12]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[13]  I. Ponce de León,et al.  Adaptation Mechanisms in the Evolution of Moss Defenses to Microbes , 2017, Front. Plant Sci..

[14]  Vincent Moulton,et al.  Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus , 2017, Nature.

[15]  Cathy H. Wu,et al.  UniProt: the universal protein knowledgebase , 2016, Nucleic Acids Research.

[16]  K. Shimamoto,et al.  Plasma Membrane Microdomains Are Essential for Rac1-RbohB/H-Mediated Immunity in Rice , 2016, Plant Cell.

[17]  M. Kirst,et al.  Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield , 2016, Plant biotechnology journal.

[18]  R. Reski,et al.  A single homeobox gene triggers phase transition, embryogenesis and asexual reproduction , 2016, Nature Plants.

[19]  J. Ludwig-Müller,et al.  Knockout of GH3 genes in the moss Physcomitrella patens leads to increased IAA levels at elevated temperature and in darkness. , 2015, Plant physiology and biochemistry : PPB.

[20]  I. Feussner,et al.  An enhanced plant lipidomics method based on multiplexed liquid chromatography-mass spectrometry reveals additional insights into cold- and drought-induced membrane remodeling. , 2015, The Plant journal : for cell and molecular biology.

[21]  Robert D. Finn,et al.  HMMER web server: 2015 update , 2015, Nucleic Acids Res..

[22]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[23]  A. Zimmer,et al.  Insights from the cold transcriptome of Physcomitrella patens: global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation , 2014, The New phytologist.

[24]  M. Ikeuchi,et al.  Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation , 2014, Nature Communications.

[25]  P. Convey,et al.  Millennial timescale regeneration in a moss from Antarctica , 2014, Current Biology.

[26]  R. Reski,et al.  High contents of very long-chain polyunsaturated fatty acids in different moss species , 2013, Plant Cell Reports.

[27]  B. Henrissat,et al.  Genome of the red alga Porphyridium purpureum , 2013, Nature Communications.

[28]  Douglas G. Scofield,et al.  The Norway spruce genome sequence and conifer genome evolution , 2013, Nature.

[29]  J. Thelen,et al.  ACYL-LIPID DESATURASE2 Is Required for Chilling and Freezing Tolerance in Arabidopsis[C][W] , 2013, Plant Cell.

[30]  Susana M. Coelho,et al.  Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida , 2013, Proceedings of the National Academy of Sciences.

[31]  J. Banfield,et al.  Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote , 2013, Science.

[32]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[33]  L. Willmitzer,et al.  Differential remodeling of the lipidome during cold acclimation in natural accessions of Arabidopsis thaliana. , 2012, The Plant journal : for cell and molecular biology.

[34]  R. Haslam,et al.  Involvement of Arabidopsis ACYL-COENZYME A DESATURASE-LIKE2 (At2g31360) in the Biosynthesis of the Very-Long-Chain Monounsaturated Fatty Acid Components of Membrane Lipids1[W] , 2012, Plant Physiology.

[35]  J. Poulain,et al.  Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage , 2012, Genome Biology.

[36]  Ulrich C. Klostermeier,et al.  Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation , 2012, Genome Biology.

[37]  B. Faircloth,et al.  Primer3—new capabilities and interfaces , 2012, Nucleic acids research.

[38]  Jean-Michel Claverie,et al.  The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation , 2012, Genome Biology.

[39]  S. Xiao,et al.  Sphingolipids and Plant Defense/Disease: The “Death” Connection and Beyond , 2012, Front. Plant Sci..

[40]  J. Markham,et al.  Sphingolipid Δ8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis. , 2012, The Plant journal : for cell and molecular biology.

[41]  X. Qiu,et al.  The Front-end Desaturase: Structure, Function, Evolution and Biotechnological Use , 2012, Lipids.

[42]  Tanya Z. Berardini,et al.  The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools , 2011, Nucleic Acids Res..

[43]  Artemis Perraki,et al.  An update on plant membrane rafts. , 2011, Current opinion in plant biology.

[44]  S. Mongrand,et al.  Fast screening of highly glycosylated plant sphingolipids by tandem mass spectrometry. , 2011, Rapid communications in mass spectrometry : RCM.

[45]  Michael S. Barker,et al.  The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants , 2011, Science.

[46]  J. Cregg,et al.  Two Pathways of Sphingolipid Biosynthesis Are Separated in the Yeast Pichia pastoris* , 2011, The Journal of Biological Chemistry.

[47]  J. Jurka,et al.  Genomic Analysis of Organismal Complexity in the Multicellular Green Alga Volvox carteri , 2010, Science.

[48]  E. Schmelz,et al.  Pythium infection activates conserved plant defense responses in mosses , 2009, Planta.

[49]  Leszek Rychlewski,et al.  The Phaeodactylum genome reveals the evolutionary history of diatom genomes , 2008, Nature.

[50]  Sara L. Zimmer,et al.  The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions , 2007, Science.

[51]  Nicholas H. Putnam,et al.  The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation , 2007, Proceedings of the National Academy of Sciences.

[52]  John A. Hamilton,et al.  The TIGR Rice Genome Annotation Resource: improvements and new features , 2006, Nucleic Acids Res..

[53]  J. Markham,et al.  Separation and Identification of Major Plant Sphingolipid Classes from Leaves* , 2006, Journal of Biological Chemistry.

[54]  R. Quatrano,et al.  Identification and Functional Characterization of the Moss Physcomitrella patens Δ5-Desaturase Gene Involved in Arachidonic and Eicosapentaenoic Acid Biosynthesis* , 2006, Journal of Biological Chemistry.

[55]  R. Bhat,et al.  Lipid rafts in plants , 2005, Planta.

[56]  J. Browse,et al.  Identification of the Arabidopsis Palmitoyl-Monogalactosyldiacylglycerol Δ7-Desaturase Gene FAD5, and Effects of Plastidial Retargeting of Arabidopsis Desaturases on the fad5 Mutant Phenotype1 , 2004, Plant Physiology.

[57]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[58]  T. Dunn,et al.  A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana. , 2004, Annals of botany.

[59]  P. Benveniste Biosynthesis and accumulation of sterols. , 2004, Annual review of plant biology.

[60]  K. Yamato,et al.  Isolation and Characterization of Δ6-Desaturase, an ELO-Like Enzyme and Δ5-Desaturase from the Liverwort Marchantia Polymorpha and Production of Arachidonic and Eicosapentaenoic Acids in the Methylotrophic Yeast Pichia Pastoris , 2004, Plant Molecular Biology.

[61]  T. Zank,et al.  The evolution of desaturases. , 2003, Prostaglandins, leukotrienes, and essential fatty acids.

[62]  S. Rensing,et al.  Day Length and Temperature Strongly Influence Sexual Reproduction and Expression of a Novel MADS‐Box Gene in the Moss Physcomitrella patens , 2002 .

[63]  D. Bowles,et al.  Plants in a cold climate. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[64]  E. Heinz,et al.  Desaturases fused to their electron donor , 2001 .

[65]  John Shanklin,et al.  DESATURATION AND RELATED MODIFICATIONS OF FATTY ACIDS1. , 1998, Annual review of plant physiology and plant molecular biology.

[66]  S. Elvira,et al.  A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants , 1992 .

[67]  G. Francis,et al.  Alkylthiolation for the determination of double-bond positions in linear alkenes , 1987 .

[68]  R. Reski,et al.  Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine , 1985, Planta.

[69]  Matthew W. Brown,et al.  The New Tree of Eukaryotes. , 2019, Trends in ecology & evolution.

[70]  Julien Gronnier,et al.  Plant lipids: Key players of plasma membrane organization and function. , 2019, Progress in lipid research.

[71]  Michael Zuker,et al.  UNAFold: software for nucleic acid folding and hybridization. , 2008, Methods in molecular biology.

[72]  R. Reski,et al.  An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens , 2003, Current Genetics.

[73]  J. Napier,et al.  A growing family of cytochrome b5-domain fusion proteins , 1999 .