Mapping-Based Image Diffusion

In this work, we introduce a novel tensor-based functional for targeted image enhancement and denoising. Via explicit regularization, our formulation incorporates application-dependent and contextual information using first principles. Few works in literature treat variational models that describe both application-dependent information and contextual knowledge of the denoising problem. We prove the existence of a minimizer and present results on tensor symmetry constraints, convexity, and geometric interpretation of the proposed functional. We show that our framework excels in applications where nonlinear functions are present such as in gamma correction and targeted value range filtering. We also study general denoising performance where we show comparable results to dedicated PDE-based state-of-the-art methods.

[1]  Freddie Åström,et al.  On Backward p(x)-Parabolic Equations for Image Enhancement , 2015 .

[2]  J. F. Kaiser,et al.  On a simple algorithm to calculate the 'energy' of a signal , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[3]  Petros Maragos,et al.  Tensor-based image diffusions derived from generalizations of the Total Variation and Beltrami Functionals , 2010, 2010 IEEE International Conference on Image Processing.

[4]  Jianhong Shen,et al.  EULER'S ELASTICA AND CURVATURE BASED INPAINTINGS , 2002 .

[5]  Frédo Durand,et al.  Patch Complexity, Finite Pixel Correlations and Optimal Denoising , 2012, ECCV.

[6]  Andy M. Yip,et al.  Total Variation Image Restoration: Overview and Recent Developments , 2006, Handbook of Mathematical Models in Computer Vision.

[7]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[8]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[9]  Antonio Torralba,et al.  Statistics of natural image categories , 2003, Network.

[10]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[11]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[12]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[13]  Petros Maragos,et al.  Conditions for positivity of an energy operator , 1994, IEEE Trans. Signal Process..

[14]  Erik M. Bollt,et al.  Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion , 2009, Adv. Comput. Math..

[15]  Joachim Weickert,et al.  A Review of Nonlinear Diffusion Filtering , 1997, Scale-Space.

[16]  Michael Felsberg,et al.  A Tensor Variational Formulation of Gradient Energy Total Variation , 2015, EMMCVPR.

[17]  Hans Knutsson,et al.  Signal processing for computer vision , 1994 .

[18]  Michael J. Black,et al.  On the unification of line processes, outlier rejection, and robust statistics with applications in early vision , 1996, International Journal of Computer Vision.

[19]  Hanno Scharr,et al.  Diffusion filtering without parameter tuning: Models and inference tools , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[21]  E. DiBenedetto Degenerate Parabolic Equations , 1993 .

[22]  Michael Felsberg Autocorrelation-Driven Diffusion Filtering , 2011, IEEE Transactions on Image Processing.

[23]  Joachim Weickert,et al.  Relations Between Regularization and Diffusion Filtering , 2000, Journal of Mathematical Imaging and Vision.

[24]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[25]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[26]  Michael Felsberg,et al.  Density Driven Diffusion , 2013, SCIA.

[27]  Arjan Kuijper,et al.  Geometrical PDEs based on second-order derivatives of gauge coordinates in image processing , 2009, Image Vis. Comput..

[28]  Frederic Devernay,et al.  A Variational Method for Scene Flow Estimation from Stereo Sequences , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[29]  Michael Felsberg,et al.  POI Detection Using Channel Clustering and the 2D Energy Tensor , 2004, DAGM-Symposium.

[30]  Yunmei Chen,et al.  Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..

[31]  M. Grasmair,et al.  Anisotropic Total Variation Filtering , 2010 .

[32]  Michael Felsberg,et al.  On Tensor-Based PDEs and Their Corresponding Variational Formulations with Application to Color Image Denoising , 2012, ECCV.

[33]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[34]  K. Nordberg Signal Representation and Processing using Operator Groups , 1994 .

[35]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[36]  Tony Lindeberg,et al.  Direct computation of shape cues using scale-adapted spatial derivative operators , 1996, International Journal of Computer Vision.

[37]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[38]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Luc Van Gool,et al.  SEEDS: Superpixels Extracted via Energy-Driven Sampling , 2012, ECCV.

[40]  Michael Felsberg,et al.  GET: The Connection Between Monogenic Scale-Space and Gaussian Derivatives , 2005, Scale-Space.

[41]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[42]  Tony F. Chan,et al.  Total variation blind deconvolution , 1998, IEEE Trans. Image Process..

[43]  Guillermo Sapiro,et al.  Filling-in by joint interpolation of vector fields and gray levels , 2001, IEEE Trans. Image Process..

[44]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[45]  Gaurav Sharma Digital Color Imaging Handbook , 2002 .

[46]  Michael Felsberg,et al.  Targeted Iterative Filtering , 2013, SSVM.

[47]  José M. Bioucas-Dias,et al.  Adaptive total variation image deblurring: A majorization-minimization approach , 2009, Signal Process..

[48]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[49]  Chak-Kuen Wong,et al.  Total variation image restoration: numerical methods and extensions , 1997, Proceedings of International Conference on Image Processing.

[50]  Timo Kohlberger,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Variational Optic Flow Computation in Real-time Variational Optic Flow Computation in Real-time , 2022 .

[51]  Michael Felsberg,et al.  On the Choice of Tensor Estimation for Corner Detection, Optical Flow and Denoising , 2014, ACCV Workshops.

[52]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[53]  Qi Gao,et al.  A generative perspective on MRFs in low-level vision , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[54]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[55]  G. Aubert,et al.  Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations (Applied Mathematical Sciences) , 2006 .

[56]  Petros Maragos,et al.  Convex Generalizations of Total Variation Based on the Structure Tensor with Applications to Inverse Problems , 2013, SSVM.

[57]  Bernd Jähne,et al.  Signal processing and pattern recognition , 1999 .

[58]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[59]  J. Bigun,et al.  Optimal Orientation Detection of Linear Symmetry , 1987, ICCV 1987.