Combined experimental and theoretical study of small aluminum oxygen clusters

Abstract.We report a combined experimental and computational investigation of small AlnOm species (n ≤20, m ≤ 12), produced in a laser vaporization cluster source. The oxygen content in the clusters was tuned by varying the oxygen concentration in the carrier gas. Ionization energies are bracketed using different ionizing photon energies in the energy range between 5.37 and 7.89 eV. Among the singly doped AlnO species, Al3O and Al15O are found to have relatively low ionization energies, which can be related to the magic character of the corresponding cations. Peculiarly low ionization energies also are observed for specific oxygen rich species (m > 1), suggesting the formation of ionically bound subunits. The structures and ionization energies of singly doped AlnO0,+ (n = 1 - 7) clusters were determined using density functional theory (B3LYP/6-311+G(d)).

[1]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[2]  Johnson,et al.  Calculated electronic structure of icosahedral Al and Al-Mn alloys. , 1986, Physical review letters.

[3]  Electronic structure of CsN and CsNO clusters , 1989 .

[4]  A. W. Castleman,et al.  Thermal metal cluster anion reactions: Behavior of aluminum clusters with oxygen , 1989 .

[5]  H. Limberger,et al.  Photoionization spectra of cesium and cesium oxide clusters , 1989 .

[6]  G. Borstel,et al.  Electronic and atomic structure of CsN and CsNO clusters , 1990 .

[7]  Honea,et al.  Electronic shell structure of group-IIIA metal atomic clusters. , 1990, Physical review letters.

[8]  P. Schleyer,et al.  Ab initio prediction of the structures and stabilities of the hyperaluminum molecules: Al3O and square-planar Al4O , 1991 .

[9]  Cheng,et al.  Electronic structure and binding energies of aluminum clusters. , 1991, Physical review. B, Condensed matter.

[10]  G. A. Petersson,et al.  A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms , 1991 .

[11]  B. Dunlap,et al.  Characterization of cluster ions produced by the sputtering or direct laser vaporization of group 13 metal (Al, Ga, and In) oxides , 1991 .

[12]  Jena,et al.  Optical resonances in bimetallic clusters and their relation to the electronic structure. , 1992, Physical review. B, Condensed matter.

[13]  P. Schleyer,et al.  Ab initio Prediction of the Structures and Stabilities of the Hyperaluminum Molecules: Al3O and Square-Planar Al4O. , 1992 .

[14]  T. P. Martin,et al.  Evidence for octahedral shell structure in aluminum clusters , 1992 .

[15]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[16]  M. Broyer,et al.  Shell structure of small indium clusters below N≈200 atoms , 1993 .

[17]  Gong,et al.  Enhanced stability of magic clusters: A case study of icosahedral Al12X, X=B, Al, Ga, C, Si, Ge, Ti, As. , 1993, Physical review letters.

[18]  M. Broyer,et al.  Shell effects in photoionization spectra of heavy trivalent metal clusters , 1993 .

[19]  M. Broyer,et al.  Shell structure in photoionization spectra of large aluminum clusters , 1993 .

[20]  Michel Pellarin,et al.  Competition between atomic shell and electronic shell structures in aluminum clusters , 1994 .

[21]  C. Yeretzian Electronic structure effects in bimetallic MxN clusters : M = alkali, N = divalent metal , 1995 .

[22]  Hongbin Wu,et al.  A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlxOy− (x=1–2, y=1–5) , 1997 .

[23]  P. Dugourd,et al.  Metal-insulator segregation in lithium rich LinHm + clusters , 1997 .

[24]  C. Bréchignac,et al.  Loss of metallicity in metal rich lithium oxide clusters , 1997 .

[25]  Lai‐Sheng Wang,et al.  Al3Oy (y=0–5) clusters: Sequential oxidation, metal-to-oxide transformation, and photoisomerization , 1998 .

[26]  Hongbin Wu,et al.  S-P HYBRIDIZATION AND ELECTRON SHELL STRUCTURES IN ALUMINUM CLUSTERS : A PHOTOELECTRON SPECTROSCOPY STUDY , 1998 .

[27]  V. Boutou,et al.  STRUCTURAL TRANSITION IN BARIUM SUBOXIDE CLUSTERS , 1998 .

[28]  A. Navarro‐Vázquez,et al.  Ionization potentials of hypervalent LinC (2≤n≤10) , 1999 .

[29]  R. Silverans,et al.  Evidence for size-dependent electron delocalization in the ionization potentials of lithium monocarbide clusters , 1999 .

[30]  Simon D. Elliott,et al.  Clusters of aluminium, a density functional study , 1999 .

[31]  A. Navarro‐Vázquez,et al.  Ionization potentials of LinO (2⩽n⩽70) clusters: Experiment and theory , 1999 .

[32]  E. Davidson,et al.  Electronic Structure and Low-Lying Electronic States of Al3O and Al3O-: Photoelectron Spectrum of Al3O- , 1999 .

[33]  B. Rao,et al.  Evolution of the electronic structure and properties of neutral and charged aluminum clusters: A comprehensive analysis , 1999 .

[34]  Andreas Hirsch,et al.  Spherical Aromaticity in Ih Symmetrical Fullerenes: The 2(N+1)2 Rule. , 2000, Angewandte Chemie.

[35]  V. Boutou,et al.  Electronic properties of mixed barium–oxygen clusters , 2000 .

[36]  B. D. Leskiw,et al.  The interplay between the electronic structure and reactivity of aluminum clusters: model systems as building blocks for cluster assembled materials , 2000 .

[37]  F. Despa,et al.  Production of bimetallic clusters by a dual-target dual-laser vaporization source , 2000 .

[38]  A. Nakajima,et al.  Electronic properties of substituted aluminum clusters by boron and carbon atoms (AlnBm−/AlnCm−); new insights into s–p hybridization and perturbed shell structures , 2001 .

[39]  J. V. Ortiz,et al.  Electronic Structure of AlO2, AlO2-, Al3O5, and Al3O5-Clusters , 2001 .

[40]  Qiang Sun,et al.  Structures and stability of Al7C and Al7N clusters , 2002 .

[41]  A. Mebel,et al.  A theoretical study of isomerism in doped aluminum XAl12 clusters (X=B, Al, Ga, C, Si, Ge) with 40 valence electrons , 2002 .

[42]  J. V. Ortiz,et al.  Al3On and Al3On- (n = 1-3) clusters: Structures, photoelectron spectra, harmonic vibrational frequencies, and atomic charges , 2002 .

[43]  Ionization potentials and structures of small indium monoxide clusters , 2003 .

[44]  J. Soler,et al.  Study of (Al2O3)n(Ox) clusters with n ≤ 16 and x = 0, 1, 2 from first principles calculations , 2003 .

[45]  Michael A. Duncan,et al.  Structure determination of gas phase aluminum oxide clusters , 2003 .

[46]  J. Soler,et al.  First principles calculation of the geometric and electronic structure of (Al2O3)n(Ox) clusters with n<15 and x=0, 1, 2 , 2003 .

[47]  Zhongfang Chen,et al.  Extremely stable metal-encapsulated AlPb10+ and AlPb12+ clusters: mass-spectrometric discovery and density functional theory study. , 2004, Physical review letters.

[48]  G. Helden,et al.  Experimental study of gas phase titanium and aluminum oxide clusters , 2004 .

[49]  E. Janssens,et al.  Shells of electrons in metal doped simple metal clusters , 2004 .

[50]  D. Sülzle,et al.  A density functional study of small AlxOy (x,y=1-4) clusters and their thermodynamic properties , 2005 .

[51]  Adsorption and dissociation of water on relaxed alumina clusters: a first principles study , 2005 .

[52]  S. Khanna,et al.  Multiple valence superatoms , 2006, Proceedings of the National Academy of Sciences.

[53]  R. King,et al.  To achieve stable spherical clusters: general principles and experimental confirmations. , 2006, Journal of the American Chemical Society.

[54]  E. M. Fernández,et al.  Theoretical study of CO adsorption on Au/alumina substrates , 2006 .

[55]  姜长生,et al.  Chaos synchronization between two different 4D hyperchaotic Chen systems , 2007 .

[56]  杨鹏,et al.  Structure and stability of neutral and cationic AlnO clusters , 2007 .