Correction: Turing Patterning Using Gene Circuits with Gas-Induced Degradation of Quorum Sensing Molecules

[This corrects the article DOI: 10.1371/journal.pone.0153679.].

[1]  Jeff Hasty,et al.  Turing Patterning Using Gene Circuits with Gas-Induced Degradation of Quorum Sensing Molecules , 2016, PloS one.

[2]  O. Jousson,et al.  Ethylene-producing bacteria that ripen fruit. , 2014, ACS synthetic biology.

[3]  James Sharpe,et al.  A unified design space of synthetic stripe-forming networks , 2014, Nature Communications.

[4]  Luis Diambra,et al.  Cooperativity To Increase Turing Pattern Space for Synthetic Biology , 2014, ACS synthetic biology.

[5]  D. Goldman Regeneration, morphogenesis and self-organization , 2014, Development.

[6]  B. Mauroy,et al.  An archetypal mechanism for branching organogenesis , 2014, Physical biology.

[7]  Lingchong You,et al.  Temporal control of self-organized pattern formation without morphogen gradients in bacteria , 2013, Molecular systems biology.

[8]  Dagmar Iber,et al.  Kidney branching morphogenesis under the control of a ligand–receptor-based Turing mechanism , 2013, Physical biology.

[9]  Jamie Sleigh,et al.  Interacting Turing-Hopf Instabilities Drive Symmetry-Breaking Transitions in a Mean-Field Model of the Cortex: A Mechanism for the Slow Oscillation , 2013 .

[10]  M. Federle,et al.  Exploiting Quorum Sensing To Confuse Bacterial Pathogens , 2013, Microbiology and Molecular Reviews.

[11]  J. Sharpe,et al.  Hox Genes Regulate Digit Patterning by Controlling the Wavelength of a Turing-Type Mechanism , 2012, Science.

[12]  James Sharpe,et al.  Turing patterns in development: what about the horse part? , 2012, Current opinion in genetics & development.

[13]  M. Roussel,et al.  Turing-Hopf instability in biochemical reaction networks arising from pairs of subnetworks. , 2012, Mathematical biosciences.

[14]  L. Tsimring,et al.  Vacuum-assisted cell loading enables shear-free mammalian microfluidic culture. , 2012, Lab on a chip.

[15]  Mark Kittisopikul,et al.  Localized cell death focuses mechanical forces during 3D patterning in a biofilm , 2012, Proceedings of the National Academy of Sciences.

[16]  L. Glass,et al.  Pacemaker interactions induce reentrant wave dynamics in engineered cardiac culture. , 2012, Chaos.

[17]  Gürol M. Süel,et al.  Engineered E. coli that detect and respond to gut inflammation through nitric oxide sensing. , 2012, ACS synthetic biology.

[18]  Ruth E Baker,et al.  Turing's model for biological pattern formation and the robustness problem , 2012, Interface Focus.

[19]  William C. Deloache,et al.  Spatial organization of enzymes for metabolic engineering. , 2012, Metabolic engineering.

[20]  S. Small,et al.  A System of Repressor Gradients Spatially Organizes the Boundaries of Bicoid-Dependent Target Genes , 2012, Cell.

[21]  Miki Ebisuya,et al.  Synthetic Signal Propagation Through Direct Cell-Cell Interaction , 2012, Science Signaling.

[22]  Paul T. Sharpe,et al.  Periodic stripe formation by a Turing-mechanism operating at growth zones in the mammalian palate , 2012, Nature Genetics.

[23]  Murat Arcak,et al.  A Feedback Quenched Oscillator Produces Turing Patterning with One Diffuser , 2012, PLoS Comput. Biol..

[24]  Ivan Razinkov,et al.  Sensing array of radically coupled genetic biopixels , 2011, Nature.

[25]  T. Hwa,et al.  Sequential Establishment of Stripe Patterns in an Expanding Cell Population , 2011, Science.

[26]  P. Moore,et al.  Hydrogen sulfide and cell signaling. , 2011, Annual review of pharmacology and toxicology.

[27]  Thomas Butler,et al.  Fluctuation-driven Turing patterns. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  L. Tsimring,et al.  A synchronized quorum of genetic clocks , 2009, Nature.

[29]  Shigeru Kondo,et al.  Interactions between zebrafish pigment cells responsible for the generation of Turing patterns , 2009, Proceedings of the National Academy of Sciences.

[30]  Richard S. Smith The Role of Auxin Transport in Plant Patterning Mechanisms , 2008, PLoS biology.

[31]  M. Bennett,et al.  A fast, robust, and tunable synthetic gene oscillator , 2008, Nature.

[32]  Hua Guo,et al.  Mechanism of the Quorum-Quenching Lactonase (AiiA) from Bacillus thuringiensis. 2. Substrate Modeling and Active Site Mutations , 2008, Biochemistry.

[33]  Philip S. Stewart,et al.  Physiological heterogeneity in biofilms , 2008, Nature Reviews Microbiology.

[34]  L. G. Harrison,et al.  Pattern selection in plants: coupling chemical dynamics to surface growth in three dimensions. , 2007, Annals of botany.

[35]  Thilo Gross,et al.  Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations. , 2007, Journal of theoretical biology.

[36]  E. Davidson,et al.  Response to Comment on "Gene Regulatory Networks and the Evolution of Animal Body Plans" , 2006, Science.

[37]  B. Bassler,et al.  Quorum sensing: cell-to-cell communication in bacteria. , 2005, Annual review of cell and developmental biology.

[38]  Bartosz A. Grzybowski,et al.  Micro- and nanotechnology via reaction–diffusion , 2005 .

[39]  S. Basu,et al.  A synthetic multicellular system for programmed pattern formation , 2005, Nature.

[40]  K. Krischer,et al.  Stationary spatial patterns during bulk CO electrooxidation on platinum. , 2005, The journal of physical chemistry. B.

[41]  Philip K. Maini,et al.  Speed of pattern appearance in reaction-diffusion models: Implications in the pattern formation of limb bud mesenchyme cells , 2004, Bulletin of mathematical biology.

[42]  R. Bar-Ziv,et al.  Principles of cell-free genetic circuit assembly , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[44]  Philip S. Stewart,et al.  Diffusion in Biofilms , 2003, Journal of bacteriology.

[45]  Andrew D Rutenberg,et al.  Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. , 2003, Physical review letters.

[46]  L. Øvreås,et al.  Microbial diversity and function in soil: from genes to ecosystems. , 2002, Current opinion in microbiology.

[47]  E. Lin,et al.  Quinones as the Redox Signal for the Arc Two-Component System of Bacteria , 2001, Science.

[48]  Y. Sawada,et al.  Spontaneous symmetry breaking turing-type pattern formation in a confined Dictyostelium cell mass. , 2000, Physical review letters.

[49]  G. Whitesides,et al.  Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[50]  S. Altuvia,et al.  Escherichia coli response to hydrogen peroxide: a role for DNA supercoiling, Topoisomerase I and Fis , 2000, Molecular microbiology.

[51]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[52]  J. Forstová,et al.  Ammonia mediates communication between yeast colonies , 1997, Nature.

[53]  M. Dahlem,et al.  Self-induced splitting of spiral-shaped spreading depression waves in chicken retina , 1997, Experimental Brain Research.

[54]  I. Epstein,et al.  A chemical approach to designing Turing patterns in reaction-diffusion systems. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[55]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[56]  J Hasty,et al.  Microfluidics for synthetic biology: from design to execution. , 2011, Methods in enzymology.

[57]  R. Kapral,et al.  Dynamics of Self-Organized and Self-Assembled Structures: Order parameter, free energy, and phase transitions , 2009 .

[58]  E. A. Gaffneya,et al.  Gene Expression Time Delays and Turing Pattern Formation Systems , 2006 .

[59]  Robert Dillon,et al.  Pattern formation in generalized Turing systems , 1994 .

[60]  B. Goodwin Oscillatory behavior in enzymatic control processes. , 1965, Advances in enzyme regulation.