Tetrahedral Trees

We address the problem of performing efficient spatial and topological queries on large tetrahedral meshes with arbitrary topology and complex boundaries. Such meshes arise in several application domains, such as 3D Geographic Information Systems (GISs), scientific visualization, and finite element analysis. To this aim, we propose Tetrahedral trees, a family of spatial indexes based on a nested space subdivision (an octree or a kD-tree) and defined by several different subdivision criteria. We provide efficient algorithms for spatial and topological queries on Tetrahedral trees and compare to state-of-the-art approaches. Our results indicate that Tetrahedral trees are an improvement over R*-trees for querying tetrahedral meshes; they are more compact, faster in many queries, and stable at variations of construction thresholds. They also support spatial queries on more general domains than topological data structures, which explicitly encode adjacency information for efficient navigation but have difficulties with domains with a non-trivial geometric or topological shape.

[1]  Chen Li,et al.  Supporting location-based approximate-keyword queries , 2010, GIS '10.

[2]  Ashraf El-Hamalawi,et al.  Mesh Generation – Application to Finite Elements , 2001 .

[3]  Pierre Alliez,et al.  Recent advances in compression of 3D meshes , 2005, 2005 13th European Signal Processing Conference.

[4]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[5]  Jon Louis Bentley,et al.  Quad trees a data structure for retrieval on composite keys , 1974, Acta Informatica.

[6]  Christos Faloutsos,et al.  The R+-Tree: A Dynamic Index for Multi-Dimensional Objects , 1987, VLDB.

[7]  Gerd Heber,et al.  Efficient query processing on unstructured tetrahedral meshes , 2006, SIGMOD Conference.

[8]  Bedrich Benes,et al.  Hydraulic erosion , 2006, Comput. Animat. Virtual Worlds.

[9]  Jean-Philippe Pons,et al.  High Accuracy and Visibility-Consistent Dense Multiview Stereo , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Leila De Floriani,et al.  Spatial indexing on tetrahedral meshes , 2010, GIS '10.

[11]  Leila De Floriani,et al.  A primal/dual representation for discrete Morse complexes on tetrahedral meshes , 2013, Comput. Graph. Forum.

[12]  Ernst P. Mücke,et al.  Fast randomized point location without preprocessing in two- and three-dimensional Delaunay triangulations , 1996, SCG '96.

[13]  Gilbert Held,et al.  Data compression - techniques and applications: hardware and software considerations (3. ed.) , 1986 .

[14]  Leila De Floriani,et al.  Selective refinement queries for volume visualization of unstructured tetrahedral meshes , 2004, IEEE Transactions on Visualization and Computer Graphics.

[15]  Leif Kobbelt,et al.  Simplification and Compression of 3D Meshes , 2002, Tutorials on Multiresolution in Geometric Modelling.

[16]  P Cignoni,et al.  DeWall: A fast divide and conquer Delaunay triangulation algorithm in Ed , 1998, Comput. Aided Des..

[17]  SametHanan,et al.  A consistent hierarchical representation for vector data , 1986 .

[18]  Xavier Tricoche,et al.  Matrix Trees , 2010, Comput. Graph. Forum.

[19]  Xavier Tricoche,et al.  An Efficient Point Location Method for Visualization in Large Unstructured Grids , 2003, VMV.

[20]  A. Safonova,et al.  3D Compression Made Simple: Edgebreaker on a Corner-Table , 2001 .

[21]  Leila De Floriani,et al.  A Hierarchical Spatial Index for Triangulated Surfaces , 2008, GRAPP.

[22]  Gerd Heber,et al.  Supporting Finite Element Analysis with a Relational Database Backend, Part I: There is Life beyond Files , 2007, ArXiv.

[23]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..

[24]  Leila De Floriani,et al.  Simplex and Diamond Hierarchies: Models and Applications , 2011, Comput. Graph. Forum.

[25]  Yves Bertrand,et al.  Automatic building of structured geological models , 2004, SM '04.

[26]  R. Bank,et al.  Some Refinement Algorithms And Data Structures For Regular Local Mesh Refinement , 1983 .

[27]  Franz Sauer,et al.  A Combined Eulerian-Lagrangian Data Representation for Large-Scale Applications , 2017, IEEE Transactions on Visualization and Computer Graphics.

[28]  Leila De Floriani,et al.  Data structures for simplicial complexes: an analysis and a comparison , 2005, SGP '05.

[29]  Jos B. T. M. Roerdink,et al.  The Watershed Transform: Definitions, Algorithms and Parallelization Strategies , 2000, Fundam. Informaticae.

[30]  K. Ho-Le,et al.  Finite element mesh generation methods: a review and classification , 1988 .

[31]  Leila De Floriani,et al.  Morphology analysis of 3D scalar fields based on morse theory and discrete distortion , 2009, GIS.

[32]  Shashi Shekhar,et al.  Spatial Databases - Accomplishments and Research Needs , 1999, IEEE Trans. Knowl. Data Eng..

[33]  Ingrid Carlbom,et al.  A Hierarchical Data Structure for Representing the Spatial Decomposition of 3-D Objects , 1985, IEEE Computer Graphics and Applications.

[34]  Mark S. Shephard,et al.  a General Topology-Based Mesh Data Structure , 1997 .

[35]  Hanan Samet,et al.  A consistent hierarchical representation for vector data , 1986, SIGGRAPH.

[36]  Leila De Floriani,et al.  Efficient representation and analysis of triangulated terrains , 2017, SIGSPATIAL/GIS.

[37]  Jos B. T. M. Roerdink,et al.  The Watershed Transform , 2000 .

[38]  Christos Faloutsos,et al.  On packing R-trees , 1993, CIKM '93.

[39]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[40]  Peter van Oosterom,et al.  A simplicial complex‐based DBMS approach to 3D topographic data modelling , 2008, Int. J. Geogr. Inf. Sci..

[41]  Guihai Chen,et al.  Towards Parallel Spatial Query Processing for Big Spatial Data , 2012, 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum.

[42]  Carl W. Gable,et al.  A REVIEW OF GEOLOGICAL MODELING , 2007 .

[43]  Kun Zhou,et al.  Multiscale vector volumes , 2011, SA '11.

[44]  Barbara Chapman,et al.  Using OpenMP - portable shared memory parallel programming , 2007, Scientific and engineering computation.

[45]  William H. Frey,et al.  An apporach to automatic three‐dimensional finite element mesh generation , 1985 .

[46]  Rhadamés Carmona,et al.  Octreemizer: A Hierarchical Approach for Interactive Roaming Through Very Large Volumes , 2002, VisSym.

[47]  Jean-Lou De Carufel,et al.  Point Location in Well-Shaped Meshes Using Jump-and-Walk , 2011, CCCG.

[48]  Hanan Samet,et al.  A Probabilistic Analysis of Trie-Based Sorting of Large Collections of Line Segments in Spatial Databases , 2005, SIAM J. Comput..

[49]  Andreas Nüchter,et al.  One billion points in the cloud – an octree for efficient processing of 3D laser scans , 2013 .

[50]  Øyvind Hjelle,et al.  Generalized Maps in Geological Modeling: Object-Oriented Design of Topological Kernels , 2000 .

[51]  Leila De Floriani,et al.  The Stellar tree: a Compact Representation for Simplicial Complexes and Beyond , 2017, ArXiv.

[52]  Michela Bertolotto,et al.  Evaluating the benefits of Octree-based indexing for LiDAR data , 2022 .

[53]  Leila De Floriani,et al.  Algorithms for Visibility Computation on Terrains: A Survey , 2003 .

[54]  Gregory M. Nielson,et al.  Tetrahedron based, least squares, progressive volume models with application to freehand ultrasound data , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[55]  Andrew Hughes,et al.  THREE-DIMENSIONAL GEOLOGIC MAPPING FOR GROUNDWATER APPLICATIONS , 2007 .

[56]  Jack A. Orenstein Multidimensional Tries Used for Associative Searching , 1982, Inf. Process. Lett..

[57]  Leila De Floriani,et al.  The PR-star octree: a spatio-topological data structure for tetrahedral meshes , 2011, GIS.

[58]  Craig Dillabaugh,et al.  I/O efficient path traversal in well-shaped tetrahedral meshes , 2010, CCCG.

[59]  Friso Penninga,et al.  Editing Features in a TEN- based DBMS approach for 3D Topographic Data Modelling , 2006 .

[60]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[61]  Sisi Zlatanova,et al.  Topological models and frameworks for 3D spatial objects , 2004, Comput. Geosci..

[62]  Olivier Devillers,et al.  Walking in a triangulation , 2001, SCG '01.

[63]  Nick Roussopoulos,et al.  Direct spatial search on pictorial databases using packed R-trees , 1985, SIGMOD Conference.

[64]  Richard H. Groshong,et al.  3-D Structural Geology: A Practical Guide to Surface and Subsurface Map Interpretation , 1999 .

[65]  C.-C. Jay Kuo,et al.  Technologies for 3D mesh compression: A survey , 2005, J. Vis. Commun. Image Represent..

[66]  Pedro Cano,et al.  Representation of Polyhedral Objects Using SP-Octrees , 2002, WSCG.

[67]  Rohit Chandra,et al.  Parallel programming in openMP , 2000 .

[68]  Bedrich Benes,et al.  Visual Simulation of Hydraulic Erosion , 2002, WSCG.

[69]  Jarek Rossignac,et al.  SOT: compact representation for tetrahedral meshes , 2009, Symposium on Solid and Physical Modeling.

[70]  Jean-François Rainaud,et al.  Knowledge-driven applications for geological modeling , 2005 .

[71]  Sangyoon Oh,et al.  STR-octree indexing method for processing LiDAR data , 2015, 2015 IEEE SENSORS.

[72]  Hanan Samet,et al.  Storing a collection of polygons using quadtrees , 1985, TOGS.

[73]  Paolo Cignoni,et al.  Tetrahedra Based Volume Visualization , 1997, VisMath.

[74]  A. Keith Turner,et al.  Challenges and trends for geological modelling and visualisation , 2006 .

[75]  Jeffrey Grandy,et al.  Conservative Remapping and Region Overlays by Intersecting Arbitrary Polyhedra , 1999 .

[76]  Kenneth I. Joy,et al.  Fast, Memory-Efficient Cell Location in Unstructured Grids for Visualization , 2010, IEEE Transactions on Visualization and Computer Graphics.

[77]  Carlo Cattani,et al.  Dimension-independent modeling with simplicial complexes , 1993, TOGS.

[78]  Jean-François Remacle,et al.  A two-level multithreaded Delaunay kernel , 2017, Comput. Aided Des..

[79]  Mark de Berg,et al.  The Priority R-tree: a practically efficient and worst-case optimal R-tree , 2004, SIGMOD '04.

[80]  Arturo Cifuentes,et al.  A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis , 1992 .

[81]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[82]  Bedrich Benes,et al.  Layered data representation for visual simulation of terrain erosion , 2001, Proceedings Spring Conference on Computer Graphics.

[83]  Isabel Navazo Extended octtree representation of general solids with plane faces: Model structure and algorithms , 1989, Comput. Graph..

[84]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[85]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[86]  Christer Ericson,et al.  Real-Time Collision Detection , 2004 .

[87]  Shang-Hua Teng,et al.  Unstructured Mesh Generation: Theory, Practice, and Perspectives , 2000, Int. J. Comput. Geom. Appl..

[88]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[89]  A. Melling Tracer particles and seeding for particle image velocimetry , 1997 .

[90]  Gerd Heber,et al.  Supporting Finite Element Analysis with a Relational Database Backend, Part II: Database Design and Access , 2007, ArXiv.

[91]  Douglas Comer,et al.  Ubiquitous B-Tree , 1979, CSUR.