Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization – Extreme Learning Machine approach

Abstract This paper discusses the performance of a novel Coral Reefs Optimization – Extreme Learning Machine (CRO–ELM) algorithm in a real problem of global solar radiation prediction. The work considers different meteorological data from the radiometric station at Murcia (southern Spain), both from measurements, radiosondes and meteorological models, and fully describes the hybrid CRO–ELM to solve the prediction of the daily global solar radiation from these data. The algorithm is designed in such a way that the ELM solves the prediction problem, whereas the CRO evolves the weights of the neural network, in order to improve the solutions obtained. The experiments carried out have shown that the CRO–ELM approach is able to obtain an accurate prediction of the daily global radiation, better than the classical ELM, and the Support Vector Regression algorithm.

[1]  Manuel Graña,et al.  Evolutionary ELM wrapper feature selection for Alzheimer's disease CAD on anatomical brain MRI , 2014, Neurocomputing.

[2]  M. Iqbal An introduction to solar radiation , 1983 .

[3]  B. Brinkworth Solar energy , 1974, Nature.

[4]  Muammer Ozgoren,et al.  Daily total global solar radiation modeling from several meteorological data , 2011 .

[5]  O. S. Sastry,et al.  Estimation of solar radiation using a combination of Hidden Markov Model and generalized Fuzzy model , 2013 .

[6]  S. Rehman,et al.  Artificial neural network estimation of global solar radiation using air temperature and relative humidity , 2008 .

[7]  Hongming Zhou,et al.  Extreme Learning Machine for Regression and Multiclass Classification , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[8]  Ali Rahimikhoob,et al.  Estimating global solar radiation using artificial neural network and air temperature data in a semi-arid environment , 2010 .

[9]  Sancho Salcedo-Sanz,et al.  Direct Solar Radiation Prediction Based on Soft-Computing Algorithms Including Novel Predictive Atmospheric Variables , 2013, IDEAL.

[10]  Pedro M. Mateo,et al.  A multi-objective micro genetic ELM algorithm , 2013, Neurocomputing.

[11]  Adel Mellit,et al.  Radial Basis Function Network-based prediction of global solar radiation data: Application for sizing of a stand-alone photovoltaic system at Al-Madinah, Saudi Arabia , 2010 .

[12]  Dianhui Wang,et al.  Extreme learning machines: a survey , 2011, Int. J. Mach. Learn. Cybern..

[13]  Guang-Bin Huang,et al.  Convex incremental extreme learning machine , 2007, Neurocomputing.

[14]  Soteris A. Kalogirou,et al.  Designing and Modeling Solar Energy Systems , 2009 .

[15]  Soteris A. Kalogirou,et al.  Artificial intelligence techniques for photovoltaic applications: A review , 2008 .

[16]  C. Bohren,et al.  An introduction to atmospheric radiation , 1981 .

[17]  A. Kai Qin,et al.  Evolutionary extreme learning machine , 2005, Pattern Recognit..

[18]  Soteris A. Kalogirou,et al.  Chapter 11 – Designing and Modeling Solar Energy Systems , 2014 .

[19]  O. Şenkal,et al.  Estimation of solar radiation over Turkey using artificial neural network and satellite data , 2009 .

[20]  Fei Han,et al.  An improved evolutionary extreme learning machine based on particle swarm optimization , 2013, Neurocomputing.

[21]  Sancho Salcedo-Sanz,et al.  Offshore wind farm design with the Coral Reefs Optimization algorithm , 2014 .

[22]  A. Ghanbarzadeh,et al.  The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data , 2010 .

[23]  C. K. Chan,et al.  Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN , 2011 .

[24]  Gabriel López,et al.  Selection of input parameters to model direct solar irradiance by using artificial neural networks , 2004 .

[25]  Maher Ali Alharbi Daily Global Solar Radiation Forecasting Using ANN and Extreme Learning Machine: A Case Study in Saudi Arabia , 2013 .

[26]  R. Inman,et al.  Solar forecasting methods for renewable energy integration , 2013 .

[27]  Dianhui Wang,et al.  Evolutionary extreme learning machine ensembles with size control , 2013, Neurocomputing.

[28]  J. Mubiru Predicting total solar irradiation values using artificial neural networks , 2008 .

[29]  Cyril Voyant,et al.  Optimization of an artificial neural network dedicated to the multivariate forecasting of daily glob , 2011 .

[30]  De-ti Xie,et al.  Estimation of monthly solar radiation from measured temperatures using support vector machines – A case study , 2011 .

[31]  Mehmet Şahin,et al.  Application of extreme learning machine for estimating solar radiation from satellite data , 2014 .

[32]  Haiying Dong,et al.  An Improved Prediction Approach on Solar Irradiance of Photovoltaic Power Station , 2014 .

[33]  Boris Katz,et al.  Recent Changes Implemented into the Global Forecast System at NMC , 1991 .

[34]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[35]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[36]  Wei Qiao,et al.  Short-term solar power prediction using a support vector machine , 2013 .

[37]  Natalie M. Mahowald,et al.  Particulate absorption of solar radiation: anthropogenic aerosols vs. dust , 2009 .

[38]  Adnan Sözen,et al.  Estimation of solar potential in Turkey by artificial neural networks using meteorological and geographical data , 2004 .

[39]  Chee Kheong Siew,et al.  Universal Approximation using Incremental Constructive Feedforward Networks with Random Hidden Nodes , 2006, IEEE Transactions on Neural Networks.

[40]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[41]  Kamaruzzaman Sopian,et al.  A review of solar energy modeling techniques , 2012 .

[42]  Joseph A. Jervase,et al.  Solar radiation estimation using artificial neural networks , 2002 .

[43]  Pieter Valks,et al.  Comparison of GOME total ozone data with ground data from the Spanish Brewer spectroradiometers , 2008 .

[44]  Adel Mellit,et al.  Prediction of daily global solar irradiation data using Bayesian neural network: A comparative study , 2012 .

[45]  Lei Chen,et al.  Enhanced random search based incremental extreme learning machine , 2008, Neurocomputing.

[46]  Javier Del Ser,et al.  Evaluating the Internationalization Success of Companies Through a Hybrid Grouping Harmony Search—Extreme Learning Machine Approach , 2012, IEEE Journal of Selected Topics in Signal Processing.