Amalgamation rings and the fully invariant extending property

Abstract A module M is said to be FI-extending if every fully invariant submodule of M is essential in a direct summand of M. A ring R is right FI-extending if every ideal of R is right essential in an idempotent generated right ideal of R. A ring R is called quasi-Baer if the right annihilator of every ideal is generated as a right ideal, by an idempotent. In this paper we characterize the amalgamation ring , of the rings A, B along an ideal K of B with respect to a ring homomorphism , which is either right FI-extending or quasi-Baer.

[1]  M. Zahiri,et al.  A characterization of extending generalized triangular matrix rings , 2020 .

[2]  G. Birkenmeier,et al.  Peirce decompositions, idempotents and rings , 2017, Journal of Algebra.

[3]  G. Birkenmeier,et al.  Idempotents and structures of rings , 2015, 1507.06290.

[4]  M. D'anna,et al.  Properties of chains of prime ideals in an amalgamated algebra along an ideal , 2010, 1001.0472.

[5]  M. D'anna,et al.  Amalgamated algebras along an ideal , 2009, 0901.1742.

[6]  M. D'anna,et al.  The amalgamated duplication of a ring along a multiplicative-canonical ideal , 2006, math/0612301.

[7]  M. D'anna A construction of Gorenstein rings , 2006 .

[8]  M. D'anna,et al.  AN AMALGAMATED DUPLICATION OF A RING ALONG AN IDEAL: THE BASIC PROPERTIES , 2006, math/0605602.

[9]  G. Birkenmeier,et al.  Generalized Triangular Matrix Rings and the Fully Invariant Extending Property , 2002 .

[10]  G. Birkenmeier,et al.  MODULES WITH FULLY INVARIANT SUBMODULES ESSENTIAL IN FULLY INVARIANT SUMMANDS , 2002 .

[11]  Bruno J. Müller,et al.  Modules in Which Every Fully Invariant Submodule is Essential in a Direct Summand , 2002 .

[12]  L. Fuchs,et al.  THE FULLY INVARIANT EXTENDING PROPERTY FOR ABELIAN GROUPS , 2001 .

[13]  C. R. Hajarnavis AN INTRODUCTION TO NONCOMMUTATIVE NOETHERIAN RINGS , 1991 .

[14]  A. Chatters,et al.  Endomorphism Rings of Modules over non‐singular CS Rings , 1980 .

[15]  Abraham Zaks,et al.  On Baer and quasi-Baer rings , 1970 .

[16]  W. Clark Twisted matrix units semigroup algebras , 1967 .

[17]  Masayoshi Nagata,et al.  Local Rings , 2022 .