Stochastic optimization algorithms of a Bayesian design criterion for Bayesian parameter estimation of nonlinear regression models: application in pharmacokinetics.

This article proposes three stochastic algorithms to optimize a Bayesian design criterion for Bayesian estimation of the parameters of nonlinear regression models; this criterion is the information expected from an experiment. The first algorithm is based on a stochastic version of the simplex with an adaptive sampling procedure. The others are stochastic approximation algorithms: the Kiefer-Wolfowitz and the pseudogradient algorithms. We first present the information criterion and the optimization algorithms. The efficiency of each algorithm for optimizing this Bayesian design criterion is then assessed by a simulation study for a nonlinear model assuming a discrete prior distribution. An application for designing an experiment to estimate the kinetics of radioiodine thyroid uptake is then proposed.

[1]  A H Thomson,et al.  Bayesian Parameter Estimation and Population Pharmacokinetics , 1992, Clinical pharmacokinetics.

[2]  Jürgen Pilz,et al.  Bayesian estimation and experimental design in linear regression models , 1992 .

[3]  A. Atkinson The Usefulness of Optimum Experimental Designs , 1996 .

[4]  Harold J. Kushner,et al.  Penalty Function Methods for Constrained Stochastic Approximation , 1974 .

[5]  David Z. D'Argenio,et al.  Discrete approximation of multivariate densities with application to Bayesian estimation , 1984 .

[6]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[7]  D. Ruppert,et al.  Optimization Using Stochastic Approximation and Monte Carlo Simulation (with Application to Harvesting of Atlantic Menhaden) , 1984 .

[8]  W. G. Hunter,et al.  The use of prior distributions in the design of experiments for parameter estimation in non-linear situations. , 1967, Biometrika.

[9]  Quimby Eh,et al.  Dosage determination with radioactive isotopes. , 1948 .

[10]  H. Kesten Accelerated Stochastic Approximation , 1958 .

[11]  A Iliadis,et al.  APIS: a software for model identification, simulation and dosage regimen calculations in clinical and experimental pharmacokinetics. , 1992, Computer methods and programs in biomedicine.

[12]  P. Müller,et al.  Numerical Evaluation of Information- Theoretic Measures , 1996 .

[13]  I. Verdinelli,et al.  Bayesian designs for maximizing information and outcome , 1992 .

[14]  Jürgen Pilz,et al.  Once more: optimal experimental design for regression models (with discussion) , 1987 .

[15]  K. Chaloner Optimal Bayesian Experimental Design for Linear Models , 1984 .

[16]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[17]  M. Degroot Uncertainty, Information, and Sequential Experiments , 1962 .

[18]  M. J. D. Powell,et al.  A Method for Minimizing a Sum of Squares of Non-Linear Functions Without Calculating Derivatives , 1965, Comput. J..

[19]  Boris Polyak,et al.  Acceleration of stochastic approximation by averaging , 1992 .

[20]  Peter Müller,et al.  Optimal Design via Curve Fitting of Monte Carlo Experiments , 1995 .

[21]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[22]  D Z D'Argenio,et al.  Incorporating prior parameter uncertainty in the design of sampling schedules for pharmacokinetic parameter estimation experiments. , 1990, Mathematical biosciences.

[23]  M Davidian,et al.  Population pharmacokinetic/pharmacodynamic methodology and applications: a bibliography. , 1994, Biometrics.

[24]  J. Kiefer,et al.  Stochastic Estimation of the Maximum of a Regression Function , 1952 .

[25]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[26]  J. Bernardo Expected Information as Expected Utility , 1979 .

[27]  W. G. Hunter,et al.  The use of prior distributions in the design of experiments for parameter estimation in non-linear situations: multiresponse case. , 1967, Biometrika.

[28]  Kumpati S. Narendra,et al.  Adaptation and learning in automatic systems , 1974 .

[29]  F Mentré,et al.  Designing an optimal experiment for Bayesian estimation: application to the kinetics of iodine thyroid uptake. , 1994, Statistics in medicine.

[30]  A. Mallet A maximum likelihood estimation method for random coefficient regression models , 1986 .

[31]  Eric Walter,et al.  Qualitative and quantitative experiment design for phenomenological models - A survey , 1990, Autom..

[32]  A. Schumitzky Nonparametric EM Algorithms for estimating prior distributions , 1991 .

[33]  Discrete approximations to continuous density functions that are L1 optimal , 1983 .

[34]  D. Lindley On a Measure of the Information Provided by an Experiment , 1956 .

[35]  I. Kopin,et al.  The thyroid and biogenic amines , 1972 .

[36]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[37]  E. Walter,et al.  Robust experiment design via stochastic approximation , 1985 .

[38]  R Jouvent,et al.  Nonparametric Estimation of Population Characteristics of the Kinetics of Lithium from Observational and Experimental Data: Individualization of Chronic Dosing Regimen Using a New Bayesian Approach , 1994, Therapeutic drug monitoring.