PHD2 inactivation in Type I cells drives HIF‐2α‐dependent multilineage hyperplasia and the formation of paraganglioma‐like carotid bodies

The carotid body is a peripheral arterial chemoreceptor that regulates ventilation in response to both acute and sustained hypoxia. Type I cells in this organ respond to low oxygen both acutely by depolarization and dense core vesicle secretion and, over the longer term, via cellular proliferation and enhanced ventilatory responses. Using lineage analysis, the present study shows that the Type I cell lineage itself proliferates and expands in response to sustained hypoxia. Inactivation of HIF‐2α in Type I cells impairs the ventilatory, proliferative and cell intrinsic (dense core vesicle) responses to hypoxia. Inactivation of PHD2 in Type I cells induces multilineage hyperplasia and ultrastructural changes in dense core vesicles to form paraganglioma‐like carotid bodies. These changes, similar to those observed in hypoxia, are dependent on HIF‐2α. Taken together, these findings demonstrate a key role for the PHD2–HIF‐2α couple in Type I cells with respect to the oxygen sensing functions of the carotid body.

[1]  J. López-Barneo,et al.  Fast neurogenesis from carotid body quiescent neuroblasts accelerates adaptation to hypoxia , 2018, EMBO reports.

[2]  R. Figlin,et al.  Phase I Dose-Escalation Trial of PT2385, a First-in-Class Hypoxia-Inducible Factor-2α Antagonist in Patients With Previously Treated Advanced Clear Cell Renal Cell Carcinoma. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  J. López-Barneo,et al.  Gene expression analyses reveal metabolic specifications in acute O2‐sensing chemoreceptor cells , 2017, The Journal of physiology.

[4]  R. Toledo New HIF2α inhibitors: potential implications as therapeutics for advanced pheochromocytomas and paragangliomas. , 2017, Endocrine-related cancer.

[5]  J. Ragoussis,et al.  Update on hypoxia-inducible factors and hydroxylases in oxygen regulatory pathways: from physiology to therapeutics , 2017, Hypoxia.

[6]  H. Matsunami,et al.  Single cell transcriptome analysis of mouse carotid body glomus cells , 2016, The Journal of physiology.

[7]  P. Robbins,et al.  Regulation of ventilatory sensitivity and carotid body proliferation in hypoxia by the PHD2/HIF‐2 pathway , 2015, Journal of Physiology.

[8]  David Grundy,et al.  Principles and standards for reporting animal experiments in The Journal of Physiology and Experimental Physiology , 2015, The Journal of physiology.

[9]  P. Ratcliffe,et al.  Signaling hypoxia by hypoxia-inducible factor protein hydroxylases: a historical overview and future perspectives , 2014, Hypoxia.

[10]  J. López-Barneo,et al.  Deletion of the von Hippel–Lindau gene causes sympathoadrenal cell death and impairs chemoreceptor-mediated adaptation to hypoxia , 2014, EMBO molecular medicine.

[11]  J. García-Verdugo,et al.  An O2-Sensitive Glomus Cell-Stem Cell Synapse Induces Carotid Body Growth in Chronic Hypoxia , 2014, Cell.

[12]  P. Arsenault,et al.  A Knock-in Mouse Model of Human PHD2 Gene-associated Erythrocytosis Establishes a Haploinsufficiency Mechanism* , 2013, The Journal of Biological Chemistry.

[13]  Thomas G. Smith,et al.  Carotid body hyperplasia and enhanced ventilatory responses to hypoxia in mice with heterozygous deficiency of PHD2 , 2013, The Journal of physiology.

[14]  A. Tischler,et al.  New syndrome of paraganglioma and somatostatinoma associated with polycythemia. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[15]  P. Ratcliffe Oxygen sensing and hypoxia signalling pathways in animals: the implications of physiology for cancer , 2013, The Journal of physiology.

[16]  Electron Kebebew,et al.  Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. , 2012, The New England journal of medicine.

[17]  P. Carmeliet,et al.  Renal Cyst Formation in Fh1-Deficient Mice Is Independent of the Hif/Phd Pathway: Roles for Fumarate in KEAP1 Succination and Nrf2 Signaling , 2011, Cancer cell.

[18]  Jiannis Ragoussis,et al.  High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. , 2011, Blood.

[19]  G. Semenza,et al.  Hypoxia-inducible factor 2α (HIF-2α) heterozygous-null mice exhibit exaggerated carotid body sensitivity to hypoxia, breathing instability, and hypertension , 2011, Proceedings of the National Academy of Sciences.

[20]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[21]  J. Wieneke,et al.  Paraganglioma: Carotid Body Tumor , 2009, Head and neck pathology.

[22]  Frederik De Smet,et al.  Heterozygous Deficiency of PHD2 Restores Tumor Oxygenation and Inhibits Metastasis via Endothelial Normalization , 2009, Cell.

[23]  Jeremy Nathans,et al.  Genetically-Directed, Cell Type-Specific Sparse Labeling for the Analysis of Neuronal Morphology , 2008, PloS one.

[24]  W. Kaelin The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer , 2008, Nature Reviews Cancer.

[25]  P. Carmeliet,et al.  Abnormal Sympathoadrenal Development and Systemic Hypotension in PHD3−/− Mice , 2008, Molecular and Cellular Biology.

[26]  G. Bisgard,et al.  Sustained hypoxia-induced proliferation of carotid body type I cells in rats. , 2008, Journal of applied physiology.

[27]  J. López-Barneo,et al.  Glia-like Stem Cells Sustain Physiologic Neurogenesis in the Adult Mammalian Carotid Body , 2007, Cell.

[28]  P. Robbins Role of the peripheral chemoreflex in the early stages of ventilatory acclimatization to altitude , 2007, Respiratory Physiology & Neurobiology.

[29]  R. Johnson,et al.  Acute postnatal ablation of Hif-2α results in anemia , 2007, Proceedings of the National Academy of Sciences.

[30]  F. Kirchhoff,et al.  Temporal control of gene recombination in astrocytes by transgenic expression of the tamoxifen‐inducible DNA recombinase variant CreERT2 , 2006, Glia.

[31]  Y. Kameda Mash1 is required for glomus cell formation in the mouse carotid body. , 2005, Developmental biology.

[32]  H. Bengtsson,et al.  Transgenic expression of Cre recombinase from the tyrosine hydroxylase locus , 2004, Genesis.

[33]  A. Harris,et al.  Differential Function of the Prolyl Hydroxylases PHD1, PHD2, and PHD3 in the Regulation of Hypoxia-inducible Factor* , 2004, Journal of Biological Chemistry.

[34]  J. Pouysségur,et al.  HIF prolyl‐hydroxylase 2 is the key oxygen sensor setting low steady‐state levels of HIF‐1α in normoxia , 2003, The EMBO journal.

[35]  R. Jaenisch,et al.  HIF-1α Is Essential for Myeloid Cell-Mediated Inflammation , 2003, Cell.

[36]  G. Bisgard,et al.  Chronic hypoxia‐induced morphological and neurochemical changes in the carotid body , 2002, Microscopy research and technique.

[37]  I. Fearon,et al.  Carotid body chemoreceptors in dissociated cell culture , 2002, Microscopy research and technique.

[38]  W. Kaelin,et al.  Molecular basis of the VHL hereditary cancer syndrome , 2002, Nature Reviews Cancer.

[39]  R. van den Berg,et al.  Management of Paragangliomas , 2002, Interventional neuroradiology : journal of peritherapeutic neuroradiology, surgical procedures and related neurosciences.

[40]  Fang Han,et al.  Periodic breathing in the mouse. , 2002, Journal of applied physiology.

[41]  G. Semenza,et al.  Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T. Dick,et al.  Ventilatory behavior after hypoxia in C57BL/6J and A/J mice. , 2001, Journal of applied physiology.

[43]  Michael I. Wilson,et al.  C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation , 2001, Cell.

[44]  G. Bisgard Carotid body mechanisms in acclimatization to hypoxia. , 2000, Respiration physiology.

[45]  R. Tuan,et al.  Expression of Angiogenic Growth Factors in Paragangliomas , 2000, The Laryngoscope.

[46]  C. Nurse,et al.  Role of ET-1 in hypoxia-induced mitosis of cultured rat carotid body chemoreceptors. , 1999, Neuroreport.

[47]  R. Hammer,et al.  The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. , 1998, Genes & development.

[48]  L. Mills,et al.  Chronic hypoxia in vitro increases volume of dissociated carotid body chemoreceptors. , 1993, Neuroreport.

[49]  D. Bayliss,et al.  Regulation of Tyrosine Hydroxylase Gene Expression in the Rat Carotid Body by Hypoxia , 1992, Journal of neurochemistry.

[50]  D. Heath,et al.  The histology of the carotid bodies in highlanders from Ladakh , 1988, International journal of biometeorology.

[51]  D. Heath,et al.  Comparative pathology of the enlarged carotid body. , 1985, Journal of comparative pathology.

[52]  S. Lahiri,et al.  A morphometric study of the carotid body in chronically hypoxic rats. , 1984, Journal of applied physiology: respiratory, environmental and exercise physiology.

[53]  S. Hellström,et al.  Intact and sympathectomized carotid bodies of long-term hypoxic rats: a morphometric ultrastructural study , 1984 .

[54]  G. Barer,et al.  The enlarged carotid body of the chronically hypoxic and chronically hypoxic and hypercapnic rat: a morphometric analysis. , 1984, Quarterly journal of experimental physiology.

[55]  T. Cooney,et al.  Malignant carotid body paraganglioma: Light and electron microscopic study of the tumor and its metastases , 1980, Cancer.

[56]  P. Laidler,et al.  Ultrastructure of carotid body in rats living at a simulated altitude of 4300 metres , 1978, The Journal of pathology.

[57]  J. Arias-Stella,et al.  Chief cell hyperplasia in the human carotid body at high altitudes; physiologic and pathologic significance. , 1976, Human pathology.

[58]  R. G. Delaney,et al.  Relative role of environmental and genetic factors in respiratory adaptation to high altitude , 1976, Nature.

[59]  P. Laidler,et al.  A quantitative morphological study of the carotid bodies of rats living at a simulated altitude of 4300 metres , 1975, The Journal of pathology.

[60]  M. Saldana,et al.  High altitude hypoxia and chemodectomas. , 1973, Human pathology.

[61]  D. Heath,et al.  Ultrastructure of the carotid body in high‐altitude guinea‐pigs , 1972, The Journal of pathology.

[62]  D. Heath,et al.  The carotid body in animals at high altitude , 1971, The Journal of pathology.

[63]  C. Evans,et al.  Intrathoracic carotid-body tumour (chemodectoma). , 1966, Thorax.

[64]  L. L. Kock Histology of the Carotid Body , 1951, Nature.

[65]  W. Kaelin The VHL Tumor Suppressor Gene: Insights into Oxygen Sensing and Cancer. , 2017, Transactions of the American Clinical and Climatological Association.

[66]  J. López-Barneo,et al.  Carotid body oxygen sensing and adaptation to hypoxia , 2015, Pflügers Archiv - European Journal of Physiology.

[67]  N. Prabhakar,et al.  Peripheral chemoreceptors: function and plasticity of the carotid body. , 2012, Comprehensive Physiology.

[68]  R. Johnson,et al.  Acute postnatal ablation of Hif-2alpha results in anemia. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[69]  A. Cochran,et al.  Paragangliomas: assessment of prognosis by histologic, immunohistochemical, and ultrastructural techniques. , 1989, Human pathology.

[70]  J. Arias-Stella,et al.  The human carotid body at high altitudes. , 1973, Pathologia et microbiologia.

[71]  J. Severinghaus,et al.  Respiratory insensitivity to hypoxia in chronically hypoxic man. , 1966, Respiration physiology.