Unveiling microscopic carrier loss mechanisms in 12% efficient Cu2ZnSnSe4 solar cells

[1]  R. Birkmire,et al.  Effects of composition and thermal treatment on VOC‐limiting defects in single‐crystalline Cu2ZnSnSe4 solar cells , 2021, Progress in Photovoltaics: Research and Applications.

[2]  M. Green,et al.  Solar cell efficiency tables (version 59) , 2021, Progress in Photovoltaics: Research and Applications.

[3]  C. Brabec,et al.  Device Performance of Emerging Photovoltaic Materials (Version 2) , 2021, Advanced Energy Materials.

[4]  T. Sakurai,et al.  Interface Recombination of Cu 2 ZnSnS 4 Solar Cells Leveraged by High Carrier Density and Interface Defects , 2021, Solar RRL.

[5]  M. Green,et al.  Solar cell efficiency tables (Version 58) , 2021, Progress in Photovoltaics: Research and Applications.

[6]  M. Green,et al.  Kesterite Solar Cells: Insights into Current Strategies and Challenges , 2021, Advanced science.

[7]  M. Green,et al.  High Efficiency Cu2ZnSn(S,Se)4 Solar Cells with Shallow LiZn Acceptor Defects Enabled by Solution‐Based Li Post‐Deposition Treatment , 2021, Advanced Energy Materials.

[8]  H. Xin,et al.  Identifying the origin of the Voc deficit of kesterite solar cells from the two grain growth mechanisms induced by Sn2+ and Sn4+ precursors in DMSO solution , 2021 .

[9]  M. Placidi,et al.  Insights into interface and bulk defects in a high efficiency kesterite-based device , 2021 .

[10]  A. El Manouni,et al.  Numerical Simulation of CZTSe Based Solar Cells Using Different Back Surface Field Layers: Improvement and Comparison , 2021, Journal of Electronic Materials.

[11]  X. Hao,et al.  Interface engineering of p-n heterojunction for kesterite photovoltaics: A progress review , 2021 .

[12]  M. Green,et al.  Defect Control for 12.5% Efficiency Cu2ZnSnSe4 Kesterite Thin‐Film Solar Cells by Engineering of Local Chemical Environment , 2020, Advanced materials.

[13]  M. Green,et al.  Emerging inorganic compound thin film photovoltaic materials: Progress, challenges and strategies , 2020 .

[14]  R. Scheer,et al.  Microscopic origins of performance losses in highly efficient Cu(In,Ga)Se2 thin-film solar cells , 2020, Nature Communications.

[15]  M. Döbeli,et al.  Persistent double layer formation in kesterite solar cells: a critical review. , 2020, ACS applied materials & interfaces.

[16]  Fangyang Liu,et al.  Device Postannealing Enabling over 12% Efficient Solution‐Processed Cu2ZnSnS4 Solar Cells with Cd2+ Substitution , 2020, Advanced materials.

[17]  T. Nakada,et al.  Alkali-induced grain boundary reconstruction on Cu(In,Ga)Se2 thin film solar cells using cesium fluoride post deposition treatment , 2020 .

[18]  Yanhong Luo,et al.  Coordination engineering of Cu-Zn-Sn-S aqueous precursor for efficient kesterite solar cells. , 2019, Science bulletin.

[19]  M. Green,et al.  Beyond 10% efficiency Cu2ZnSnS4 solar cells enabled by modifying the heterojunction interface chemistry , 2019, Journal of Materials Chemistry A.

[20]  Young-Ill Kim,et al.  Effect of solid-H2S gas reactions on CZTSSe thin film growth and photovoltaic properties of a 12.62% efficiency device , 2019, Journal of Materials Chemistry A.

[21]  Douglas M. Bishop,et al.  Carrier-resolved photo-Hall effect , 2019, Nature.

[22]  R. Malik,et al.  Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells , 2019, Nature Energy.

[23]  M. Placidi,et al.  Doping and alloying of kesterites , 2019, Journal of Physics: Energy.

[24]  Lydia Helena Wong,et al.  Emerging inorganic solar cell efficiency tables (version 2) , 2019, Journal of Physics: Energy.

[25]  B. Mendis Fully depleted emitter layers: a novel method to improve band alignment in thin-film solar cells , 2019, Semiconductor Science and Technology.

[26]  Zacharie Jehl,et al.  Progress and Perspectives of Thin Film Kesterite Photovoltaic Technology: A Critical Review , 2019, Advanced materials.

[27]  T. Todorov,et al.  Emerging inorganic solar cell efficiency tables (Version 1) , 2019 .

[28]  Y. Mai,et al.  Rear interface modification for efficient Cu(In,Ga)Se2 solar cells processed with metallic precursors and low-cost Se vapor , 2018, Solar Energy Materials and Solar Cells.

[29]  I. Repins,et al.  Minority and Majority Charge Carrier Mobility in Cu2ZnSnSe4 revealed by Terahertz Spectroscopy , 2018, Scientific Reports.

[30]  A. Tiwari,et al.  A direct measurement of higher photovoltage at grain boundaries in CdS/ CZTSe solar cells using KPFM technique , 2018, Solar Energy Materials and Solar Cells.

[31]  M. Green,et al.  Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment , 2018, Nature Energy.

[32]  C. Muzzillo,et al.  Revealing the beneficial role of K in grain interiors, grain boundaries, and at the buffer interface for highly efficient CuInSe2 solar cells , 2018, Progress in Photovoltaics: Research and Applications.

[33]  Xiuling Li,et al.  Cation Substitution in Earth‐Abundant Kesterite Photovoltaic Materials , 2018, Advanced science.

[34]  G. Dennler,et al.  On the origin of band-tails in kesterite , 2017, Solar Energy Materials and Solar Cells.

[35]  F. Creutzig,et al.  The underestimated potential of solar energy to mitigate climate change , 2017, Nature Energy.

[36]  K. Kim,et al.  Improvement of minority carrier lifetime and conversion efficiency by Na incorporation in Cu2ZnSnSe4 solar cells , 2017 .

[37]  D. Mitzi,et al.  Defect Engineering in Multinary Earth‐Abundant Chalcogenide Photovoltaic Materials , 2017 .

[38]  Rakesh Agrawal,et al.  Identifying the Real Minority Carrier Lifetime in Nonideal Semiconductors: A Case Study of Kesterite Materials , 2017 .

[39]  Daniel Abou-Ras,et al.  Assessment of elemental distributions at line and planar defects in Cu(In,Ga)Se2 thin films by atom probe tomography , 2017 .

[40]  Martin A. Green,et al.  Sentaurus modelling of 6.9% Cu2ZnSnS4 device based on comprehensive electrical & optical characterization , 2017 .

[41]  Yi Zhang,et al.  Tailoring the defects and carrier density for beyond 10% efficient CZTSe thin film solar cells , 2017 .

[42]  Z. Holman,et al.  Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17% , 2016, Nature Energy.

[43]  Yun Sun,et al.  Growth of Cu2ZnSnSe4 Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency. , 2016, ACS applied materials & interfaces.

[44]  G. Dennler,et al.  Deep Defects in Cu2ZnSnðS;SeÞ4 Solar Cells with Varying Se Content , 2016 .

[45]  Heng Wang,et al.  Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe , 2016, Science.

[46]  D. Raabe,et al.  Atom probe tomography study of internal interfaces in Cu2ZnSnSe4 thin-films , 2015 .

[47]  Yun Sun,et al.  A Temporary Barrier Effect of the Alloy Layer During Selenization: Tailoring the Thickness of MoSe2 for Efficient Cu2ZnSnSe4 Solar Cells , 2015 .

[48]  O. Gunawan,et al.  Cu2ZnSnSe4 Thin‐Film Solar Cells by Thermal Co‐evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length , 2015 .

[49]  M. Green,et al.  Benefit of Grain Boundaries in Organic-Inorganic Halide Planar Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[50]  D. Mitzi,et al.  The Role of Sodium as a Surfactant and Suppressor of Non‐Radiative Recombination at Internal Surfaces in Cu2ZnSnS4 , 2015 .

[51]  Tayfun Gokmen,et al.  High Efficiency Cu2ZnSn(S,Se)4 Solar Cells by Applying a Double In2S3/CdS Emitter , 2014, Advanced materials.

[52]  Rakesh Agrawal,et al.  Generalized current-voltage analysis and efficiency limitations in non-ideal solar cells: Case of Cu2ZnSn(SxSe1−x)4 and Cu2Zn(SnyGe1−y)(SxSe1−x)4 , 2014 .

[53]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[54]  Mowafak Al-Jassim,et al.  Grain-boundary-enhanced carrier collection in CdTe solar cells. , 2014, Physical review letters.

[55]  T. Unold,et al.  Numerical simulation of cross section electron-beam induced current in thin-film solar-cells for low and high injection conditions , 2013 .

[56]  Tayfun Gokmen,et al.  Band tailing and efficiency limitation in kesterite solar cells , 2013 .

[57]  A. Walsh,et al.  Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth‐Abundant Solar Cell Absorbers , 2013, Advanced materials.

[58]  H. Schock,et al.  Generation-dependent charge carrier transport in Cu(In,Ga)Se2/CdS/ZnO thin-film solar-cells , 2013 .

[59]  M. Edoff,et al.  Direct evidence of current blocking by ZnSe in Cu2ZnSnSe4 solar cells , 2012 .

[60]  Aron Walsh,et al.  Kesterite Thin‐Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4 , 2012 .

[61]  Tayfun Gokmen,et al.  Device characteristics of a 10.1% hydrazine‐processed Cu2ZnSn(Se,S)4 solar cell , 2012 .

[62]  D. Mitzi,et al.  Thermally evaporated Cu2ZnSnS4 solar cells , 2010 .

[63]  L. Bowen,et al.  A contactless method for measuring the recombination velocity of an individual grain boundary in thin-film photovoltaics , 2010 .

[64]  Susanne Siebentritt,et al.  The electronic structure of chalcopyrites—bands, point defects and grain boundaries , 2010 .

[65]  S. Kurtz,et al.  Requirements for a 20%-efficient polycrystalline GaAs solar cell , 2008 .

[66]  Dominique Drouin,et al.  CASINO V2.42: a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. , 2007, Scanning.

[67]  Wyatt K. Metzger,et al.  Grain-boundary recombination in Cu(In,Ga)Se2 solar cells , 2005 .

[68]  Jürgen H. Werner,et al.  Radiative efficiency limits of solar cells with lateral band-gap fluctuations , 2004 .

[69]  Steven S. Hegedus,et al.  Thin‐film solar cells: device measurements and analysis , 2004 .

[70]  W. Shafarman,et al.  Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling , 2004 .

[71]  Martin A. Green,et al.  Third generation photovoltaics , 2002, 2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601).

[72]  U. Rau Tunneling-enhanced recombination in Cu(In, Ga)Se2 heterojunction solar cells , 1999 .

[73]  Alistair B. Sproul,et al.  Dimensionless solution of the equation describing the effect of surface recombination on carrier decay in semiconductors , 1994 .

[74]  L. Kolodziejski,et al.  Recent advances in the molecular beam epitaxy of the wide-bandgap semiconductor ZnSe and its superlattices , 1988 .

[75]  H. F. Mataré,et al.  Carrier transport at grain boundaries in semiconductors , 1984 .

[76]  C. H. Seager,et al.  The determination of grain‐boundary recombination rates by scanned spot excitation methods , 1982 .

[77]  T. Matsumae,et al.  Electrical properties of Cu2−xSe thin films and their application for solar cells , 1980 .

[78]  B. Vincent Electrical properties of zinc selenide , 1980 .

[79]  J. Bass Deviations from Matthiessen's Rule† , 1972 .

[80]  G. Roberts,et al.  Thermally assisted tunnelling in dielectric films , 1970 .

[81]  C. Aring,et al.  A CRITICAL REVIEW , 1939, Journal of neurology and psychiatry.