Parallel implementations of the trace minimization scheme TraceMIN for the sparse symmetric eigenvalue problem

Eigenvalue problems arise in many computational science and engineering applications: in structural mechanics, nanoelectronics, and Google's PageRank link analysis, for example. Often, the large size of these eigenvalue problems requires the development of eigensolvers that scale well on parallel computing platforms. In this paper, we compare the effectiveness and robustness of our eigensolver for the symmetric generalized eigenvalue problem, the trace minimization scheme TraceMIN-developed in the early 1980s-against today's well-known sparse eigensolvers including: the LOBPCG and block Krylov-Schur implementations in Trilinos; ARPACK; and several methods in the PRIMME package such as the Jacobi-Davidson one. In addition, we demonstrate the parallel scalability of two variants of TraceMIN on multicore nodes as well as on large clusters of such nodes. Our results show that TraceMIN is more robust and has higher parallel scalability than the above-mentioned competing eigensolvers.

[1]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[2]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[3]  Yousef Saad,et al.  Block Krylov–Schur method for large symmetric eigenvalue problems , 2008, Numerical Algorithms.

[4]  Richard B. Lehoucq,et al.  Anasazi software for the numerical solution of large-scale eigenvalue problems , 2009, TOMS.

[5]  Ahmed H. Sameh,et al.  Trace Minimization Algorithm for the Generalized Eigenvalue Problem , 1982, PPSC.

[6]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[7]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[8]  Volker Mehrmann,et al.  Nonlinear eigenvalue and frequency response problems in industrial practice , 2011 .

[9]  A. Sameh,et al.  The trace minimization method for the symmetric generalized eigenvalue problem , 2000 .

[10]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[11]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2002, Future Gener. Comput. Syst..

[12]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[13]  G. W. Stewart,et al.  A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..

[14]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[15]  Andreas Stathopoulos,et al.  Nearly Optimal Preconditioned Methods for Hermitian Eigenproblems under Limited Memory. Part I: Seeking One Eigenvalue , 2007, SIAM J. Sci. Comput..

[16]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[17]  Andreas Stathopoulos,et al.  Nearly Optimal Preconditioned Methods for Hermitian Eigenproblems Under Limited Memory. Part II: Seeking Many Eigenvalues , 2007, SIAM J. Sci. Comput..

[18]  O. Schenk,et al.  ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .

[19]  R. Jackson Inequalities , 2007, Algebra for Parents.

[20]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[21]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[22]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.