Artificial neural network approach for evaluation of temperature and density profiles of salt gradient solar pond

AbstractThe purpose of this study is to evaluate temperature and density profiles of an experimentally investigated salt gradient solar pond (SGSP) by using artificial neural network (ANN). The input parameters of the ANN are solar pond depth, ambient temperature, radiation absorption coefficient of salty solution in the pond, initial density values of the pond and time of day. The output parameters of the ANN are temperature and density profiles in the pond. The experimental data set consists of 168 values. These divided into two groups, of which the 134 values were used for training/learning of the network and the rest of data (34 values) for testing/validation of the network performance. According to the ANN predicted results compared to the experimental results, the mean relative error (MRE) is 2·30% for temperature and 0·63% for density. The correlation coefficients (R2) between the experimentally measured and the ANN predicted results are 0·9632 for temperature and 0·9855 for density in the test/val...

[1]  N. Altinkok,et al.  Neural network approach to prediction of bending strength and hardening behaviour of particulate reinforced (Al-Si-Mg)-aluminium matrix composites , 2004 .

[2]  S. S. Murthy,et al.  Saturated solar ponds: 3. Experimental verification , 1994 .

[3]  F. Banat,et al.  Carnalite salt gradient solar ponds: an experimental study , 1994 .

[4]  A. K. Binark,et al.  Solar pond conception — experimental and theoretical studies , 2000 .

[5]  Soteris A. Kalogirou,et al.  Artificial neural networks in renewable energy systems applications: a review , 2001 .

[6]  Erol Arcaklioğlu,et al.  Performance maps of a diesel engine , 2005 .

[7]  Shivaji H. Pawar,et al.  Fertilizer solar ponds as a clean source of energy: Some observations from small scale experiments , 1995 .

[8]  Adnan Sözen,et al.  Turkey's net energy consumption , 2005 .

[9]  J. Atkinson,et al.  Theoretical and experimental comparison of conventional and advanced solar pond performance , 1993 .

[10]  Erol Arcaklioğlu,et al.  A diesel engine's performance and exhaust emissions , 2005 .

[11]  P. Lund,et al.  Radiation transmission measurements for solar ponds , 1984 .

[12]  Hideo Inaba,et al.  Experiment and analysis of practical-scale solar pond stabilized with salt gradient , 1991 .

[13]  K. P. Pandey,et al.  Comparative performance evaluation of fertiliser solar pond under simulated conditions , 2003 .

[14]  Raşit Köker,et al.  Mixture and pore volume fraction estimation in Al2O3/SiC ceramic cake using artificial neural networks , 2005 .

[15]  D. L. Styris,et al.  Solar pond stability experiments , 1976 .

[16]  M. Ozkaymak,et al.  Performance evaluation of a small‐scale sodium carbonate salt gradient solar pond , 2006 .

[17]  X. Li,et al.  Spectral calculation of the thermal performance of a solar pond and comparison of the results with experiments , 2000 .

[18]  Yasar Islamoglu,et al.  Performance prediction for non-adiabatic capillary tube suction line heat exchanger: an artificial neural network approach , 2005 .

[19]  Kenan Genel,et al.  Modeling of tribological properties of alumina fiber reinforced zinc–aluminum composites using artificial neural network , 2003 .

[20]  José S. Torrecilla,et al.  Artificial neural networks : a promising tool to design and optimize high-pressure food processes , 2005 .

[21]  S. Sablani A neural network approach for non-iterative calculation of heat transfer coefficient in fluid–particle systems , 2001 .

[22]  N. E. Wijeysundera,et al.  DESIGN AND PERFORMANCE EVALUATION OF A SOLAR POND FOR INDUSTRIAL PROCESS HEATING , 1991 .

[23]  V.V.N. Kishore,et al.  CONSTRUCTION AND OPERATIONAL EXPERIENCE OF A 6000 m2 SOLAR POND AT KUTCH, INDIA , 1999 .

[24]  S. S. Murthy,et al.  Experiments on a magnesium chloride saturated solar pond , 1991 .

[25]  G. E. Nasr,et al.  Backpropagation neural networks for modeling gasoline consumption , 2003 .

[26]  Merih Aydinalp,et al.  Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks , 2002 .

[27]  S. D. Probert,et al.  Performance of a portable mini solar-pond , 2000 .

[28]  M. J Safi,et al.  Natural brine solar pond: an experimental study , 2001 .

[29]  A. K. Binark,et al.  Experimental and numerical analysis of sodium-carbonate salt gradient solar-pond performance under simulated solar-radiation , 2006 .

[30]  X. Li,et al.  Experimental study about erosion in salt gradient solar pond , 2001 .