Subcellular Distribution and Turnover of Presenilins in Transfected Cells*

The mechanisms by which mutations in presenilin-1 (PS1) and presenilin-2 (PS2) result in the Alzheimer’s disease phenotype are unclear. Full-length PS1 and PS2 are each processed into stable proteolytic fragments after their biosynthesis in transfected cells. PS1 and PS2 have been localized by immunocytochemistry to the endoplasmic reticulum (ER) and Golgi compartments, but previous studies could not differentiate between the full-length presenilin proteins and their fragments. We carried out subcellular fractionation of cells stably transfected with PS1 or PS2 to determine the localization of full-length presenilins and their fragments. Full-length PS1 and PS2 were principally distributed in ER fractions, whereas the N- and C-terminal fragments were localized predominantly to the Golgi fractions. In cells expressing the PS1 mutant lacking exon 9 (ΔE9), we observed only full-length molecules that were present in the ER and Golgi fractions. The turnover rate was considerably slower for the ΔE9 holoprotein, apparently due to decreased degradation within the ER. Our results suggest that that full-length presenilin proteins are primarily ER resident molecules and undergo endoproteolysis within the ER. The fragments are subsequently transported to the Golgi compartment, where their turnover rate is much slower than that of the full-length presenilin in the ER.

[1]  R. Sherrington,et al.  Presenilin Proteins Undergo Heterogeneous Endoproteolysis between Thr291and Ala299and Occur as Stable N- and C-Terminal Fragments in Normal and Alzheimer Brain Tissue , 1997, Neurobiology of Disease.

[2]  A. Roses,et al.  Proteolytic processing of presenilin‐1 (PS‐1) is not associated with Alzheimer's disease with or without PS‐1 mutations , 1997, FEBS letters.

[3]  D. Borchelt,et al.  Endoproteolytic Processing and Stabilization of Wild-type and Mutant Presenilin* , 1997, The Journal of Biological Chemistry.

[4]  Jinhe Li,et al.  Alzheimer Presenilins in the Nuclear Membrane, Interphase Kinetochores, and Centrosomes Suggest a Role in Chromosome Segregation , 1997, Cell.

[5]  D. Selkoe,et al.  Interaction between amyloid precursor protein and presenilins in mammalian cells: implications for the pathogenesis of Alzheimer disease. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[6]  D. Harris,et al.  Evidence for a Six-transmembrane Domain Structure of Presenilin 1* , 1997, The Journal of Biological Chemistry.

[7]  R. Tanzi,et al.  Endoproteolytic Cleavage and Proteasomal Degradation of Presenilin 2 in Transfected Cells* , 1997, The Journal of Biological Chemistry.

[8]  C. Haass,et al.  Human presenilin-1, but not familial Alzheimer's disease (FAD) mutants, facilitate Caenorhabditis elegans Notch signalling independently of proteolytic processing. , 1997, Genes and function.

[9]  D. Selkoe,et al.  Enhanced Production and Oligomerization of the 42-residue Amyloid β-Protein by Chinese Hamster Ovary Cells Stably Expressing Mutant Presenilins* , 1997, The Journal of Biological Chemistry.

[10]  K. Beyreuther,et al.  Formation of stable complexes between two Alzheimer's disease gene products: Presenilin-2 and β-amyloid precursor protein , 1997, Nature Medicine.

[11]  P. S. St George-Hyslop,et al.  Phosphorylation, Subcellular Localization, and Membrane Orientation of the Alzheimer's Disease-associated Presenilins* , 1997, The Journal of Biological Chemistry.

[12]  D. Selkoe,et al.  Alzheimer's Disease--Genotypes, Phenotype, and Treatments , 1997, Science.

[13]  Weiming Xia,et al.  Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice , 1997, Nature Medicine.

[14]  I. Greenwald,et al.  Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  D. Borchelt,et al.  Protein Topology of Presenilin 1 , 1996, Neuron.

[16]  Allan I. Levey,et al.  Familial Alzheimer's Disease–Linked Presenilin 1 Variants Elevate Aβ1–42/1–40 Ratio In Vitro and In Vivo , 1996, Neuron.

[17]  J. Hardy,et al.  Increased amyloid-β42(43) in brains of mice expressing mutant presenilin 1 , 1996, Nature.

[18]  G. Schellenberg,et al.  Secreted amyloid β–protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease , 1996, Nature Medicine.

[19]  D. Borchelt,et al.  Endoproteolysis of Presenilin 1 and Accumulation of Processed Derivatives In Vivo , 1996, Neuron.

[20]  B. Hyman,et al.  Alzheimer–associated presenilins 1 and 2 : Neuronal expression in brain and localization to intracellular membranes in mammalian cells , 1996, Nature Medicine.

[21]  J. Rommens,et al.  Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene , 1995, Nature.

[22]  G. Schellenberg,et al.  Candidate gene for the chromosome 1 familial Alzheimer's disease locus , 1995, Science.

[23]  D. Pollen,et al.  Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease , 1995, Nature.

[24]  A. Le,et al.  Association between calnexin and a secretion-incompetent variant of human alpha 1-antitrypsin. , 1994, The Journal of biological chemistry.

[25]  G. Perry,et al.  Identification and transport of full-length amyloid precursor proteins in rat peripheral nervous system , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  R. Bretz,et al.  Detergent influence on rat-liver galactosyltransferase activities towards different acceptors. , 1977, European journal of biochemistry.