Compactness methods and nonlinear hyperbolic conservation laws

[1]  Thomas G. Kurtz Convergence of sequences of semigroups of nonlinear operators with an application to gas kinetics , 1973 .

[2]  C. Keller Geochemical Thermodynamics, 2nd Edition , 1995 .

[3]  Tai-Ping Liu The deterministic version of the Glimm scheme , 1977 .

[4]  Y. Meyer,et al.  Compensated compactness and Hardy spaces , 1993 .

[5]  On E. E. Levi's functions for hyperbolic equations with triple characteristics , 1972 .

[6]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[7]  Luc Tartar,et al.  The Compensated Compactness Method Applied to Systems of Conservation Laws , 1983 .

[8]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[9]  C. D. Levermore,et al.  Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .

[10]  K. Trivisa A prior1 estimates in hyperbolic systems of conservation laws via generalized characteristics , 1997 .

[11]  L. Hörmander,et al.  Lectures on Nonlinear Hyperbolic Differential Equations , 1997 .

[12]  James Glimm,et al.  A generalized Riemann problem for quasi-one-dimensional gas flows , 1984 .

[13]  ASYMPTOTIC LIMIT OF INITIAL BOUNDARY VALUE PROBLEMS FOR CONSERVATION LAWS WITH RELAXATIONAL EXTENSIONS , 1998 .

[14]  R. Natalini Convergence to equilibrium for the relaxation approximations of conservation laws , 1996 .

[15]  Takaaki Nishida,et al.  Global solution for an initial boundary value problem of a quasilinear hyperbolic system , 1968 .

[16]  Joel Keizer,et al.  Statistical Thermodynamics of Nonequilibrium Processes , 1987 .

[17]  P. Souganidis,et al.  Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates , 1998 .

[18]  Pierre Degond,et al.  On a one-dimensional steady-state hydrodynamic model , 1990 .

[19]  L. Evans The perturbed test function method for viscosity solutions of nonlinear PDE , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[20]  David G. Schaeffer,et al.  The classification of 2 × 2 systems of non‐strictly hyperbolic conservation laws, with application to oil recovery , 1987 .

[21]  F. Murat,et al.  Compacité par compensation , 1978 .

[22]  J. Nohel,et al.  Weak Solutions for a Nonlinear System in Viscoelasticity. , 1988 .

[23]  R. J. Diperna,et al.  Convergence of the viscosity method for isentropic gas dynamics , 1983 .

[24]  Shock capturing approximations to the compressible Euler equations with geometric structure and related equations , 1998 .

[25]  Irene M. Gamba Stationary transonic solutions of a one—dimensional hydrodynamic model for semiconductors , 1992 .

[26]  M. Pinsky,et al.  Lectures on Random Evolution , 1991 .

[27]  P. Lax Shock Waves and Entropy , 1971 .

[28]  NONLINEAR STABILITY OF TWO-MODE SHOCK PROFILES FOR A RATE-TYPE VISCOELASTIC SYSTEM WITH RELAXATION , 1999 .

[29]  Takaaki Nishida,et al.  On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation , 1979 .

[30]  S. Friedland,et al.  On the Crossing Rule , 1984 .

[31]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[32]  David H. Wagner,et al.  Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions , 1987 .

[33]  G. Darboux Leçons sur la théorie générale des surfaces , 1887 .

[34]  Gui-Qiang G. Chen,et al.  The vanishing viscosity method in one-dimensional thermoelasticity , 1995 .

[35]  P. Lax,et al.  Decay of solutions of systems of nonlinear hyperbolic conservation laws , 1970 .

[36]  B. Perthame,et al.  Kinetic formulation of the isentropic gas dynamics andp-systems , 1994 .

[37]  Hermano Frid,et al.  Decay of Entropy Solutions of Nonlinear Conservation Laws , 1999 .

[38]  H. Glaz,et al.  The asymptotic analysis of wave interactions and numerical calculations of transonic nozzle flow , 1984 .

[39]  C. D. Levermore,et al.  Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .

[40]  Richard Courant,et al.  Supersonic Flow And Shock Waves , 1948 .

[41]  D. Serre La compacité par compensation pour les systèmes hyperboliques non linéaires de deux équations à une dimension d'espace , 1986 .

[42]  B. Perthame,et al.  Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics , 1998 .

[43]  Fluid Dynamic Limits of Discrete Velocity Kinetic Equations , 1991 .

[44]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[45]  Tai-Ping Liu Hyperbolic conservation laws with relaxation , 1987 .

[46]  Gui-Qiang G. Chen,et al.  Convergence of shock capturing schemes for the compressible Euler-Poisson equations , 1996 .

[47]  Bernard Dacorogna,et al.  Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals , 1982 .

[48]  Constantine M. Dafermos,et al.  Hyperbolic Systems of Conservation Laws , 1983 .

[49]  A. Majda,et al.  Multiple Steady States for 1-D Transonic Flow , 1984 .

[50]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[51]  Tai-Ping Liu L 1 STABILITY FOR 2 × 2 SYSTEMS OF HYPERBOLIC CONSERVATION LAWS , 1999 .

[52]  A. Bressan,et al.  Uniqueness of Weak Solutions to Systems of Conservation Laws , 1997 .

[53]  Michael Struwe,et al.  Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .

[54]  Tai-Ping Liu Quasilinear hyperbolic systems , 1979 .

[55]  R. Winther,et al.  A system of conservation laws with a relaxation term , 1996 .

[56]  C. Dafermos Generalized characteristics in hyperbolic systems of conservation laws , 1989 .

[57]  L. Young,et al.  Lectures on the Calculus of Variations and Optimal Control Theory. , 1971 .

[58]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[59]  J. Ball A version of the fundamental theorem for young measures , 1989 .

[60]  Gui-Qiang G. Chen,et al.  Hyperbolic conservation laws with umbilic degeneracy, I , 1995 .

[61]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[62]  Athanasios E. Tzavaras,et al.  Materials with Internal Variables and Relaxation to Conservation Laws , 1999 .

[63]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[64]  Lawrence C. Evans,et al.  Weak convergence methods for nonlinear partial differential equations , 1990 .

[65]  Roberto Natalini,et al.  Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation , 1995 .

[66]  Tai-Ping Liu,et al.  ₁ stability for 2×2 systems of hyperbolic conservation laws , 1999 .

[67]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[68]  Gui-Qiang G. Chen,et al.  Zero relaxation and dissipation limits for hyperbolic conservation laws , 1993 .

[69]  Gui-Qiang G. Chen,et al.  Large-Time Behavior of Entropy Solutions of Conservation Laws☆ , 1999 .

[70]  P. Lax The multiplicity of eigenvalues , 1982 .

[71]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[72]  Constantine M. Dafermos,et al.  Applications of the invariance principle for compact processes II. Asymptotic behavior of solutions of a hyperbolic conservation law , 1972 .

[73]  Entropies and weak solutions of the compressible isentropic Euler equations , 1997 .

[74]  R. J. DiPerna Convergence of approximate solutions to conservation laws , 1983 .

[75]  Tai-Ping Liu Nonlinear resonance for quasilinear hyperbolic equation , 1987 .

[76]  Gui-Qiang G. Chen Hyperbolic systems of conservation laws with a symmetry , 1991 .

[77]  Peizhu Luo,et al.  CONVERGENCE OF THE LAX–FRIEDRICHS SCHEME FOR ISENTROPIC GAS DYNAMICS (III) , 1985 .

[79]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[80]  P. Lions Mathematical topics in fluid mechanics , 1996 .

[81]  Hyperbolic systems with double characteristics , 1993 .

[82]  J. J. Stoker Water Waves: The Mathematical Theory with Applications , 1957 .