Complementary Patterns of Direct Amygdala and Hippocampal Projections to the Macaque Prefrontal Cortex

The projections from the amygdala and hippocampus (including subiculum and presubiculum) to prefrontal cortex were compared using anterograde tracers injected into macaque monkeys (Macaca fascicularis, Macaca mulatta). Almost all prefrontal areas were found to receive some amygdala inputs. These connections, which predominantly arose from the intermediate and magnocellular basal nucleus, were particularly dense in parts of the medial and orbital prefrontal cortex. Contralateral inputs were not, however, observed. The hippocampal projections to prefrontal areas were far more restricted, being confined to the ipsilateral medial and orbital prefrontal cortex (within areas 11, 13, 14, 24a, 32, and 25). These hippocampal projections principally arose from the subiculum, with the fornix providing the sole route. Thus, while the lateral prefrontal cortex essentially receives only amygdala inputs, the orbital prefrontal cortex receives both amygdala and hippocampal inputs, though these typically target different areas. Only in medial prefrontal cortex do direct inputs from both structures terminate in common sites. But, even when convergence occurs within an area, the projections predominantly terminate in different lamina (hippocampal inputs to layer III and amygdala inputs to layers I, II, and VI). The resulting segregation of prefrontal inputs could enable the parallel processing of different information types in prefrontal cortex.

[1]  Y. Miyashita,et al.  Reversal of Interlaminar Signal Between Sensory and Memory Processing in Monkey Temporal Cortex , 2011, Science.

[2]  B. Vogt,et al.  Architecture and neurocytology of monkey cingulate gyrus , 2005, The Journal of comparative neurology.

[3]  Martin Büchert,et al.  Increased Prefrontal and Hippocampal Glutamate Concentration in Schizophrenia: Evidence from a Magnetic Resonance Spectroscopy Study , 2005, Biological Psychiatry.

[4]  D L Rosene,et al.  Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: Projections from CA1, prosubiculum, and subiculum to the temporal lobe , 1998, The Journal of comparative neurology.

[5]  C E Poletti,et al.  Fornix system efferent projections in the squirrel monkey: An experimental degeneration study , 1977, The Journal of comparative neurology.

[6]  M Mishkin,et al.  The locus and cytoarchitecture of the projection areas of the olfactory bulb in Macaca mulatta , 1978, The Journal of comparative neurology.

[7]  G. V. Van Hoesen,et al.  Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. , 1977, Science.

[8]  K. Saleem,et al.  Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys , 2005, The Journal of comparative neurology.

[9]  R. Insausti,et al.  Cortical efferents of the entorhinal cortex and the adjacent parahippocampal region in the monkey (Macaca fascicularis) , 2005, The European journal of neuroscience.

[10]  D L Rosene,et al.  A comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: I. Convergence in the entorhinal, prorhinal, and perirhinal cortices , 1988, The Journal of comparative neurology.

[11]  J. Aggleton Multiple anatomical systems embedded within the primate medial temporal lobe: Implications for hippocampal function , 2012, Neuroscience & Biobehavioral Reviews.

[12]  M Mishkin,et al.  Projections of the amygdala to the thalamus in the cynomolgus monkey , 1984, The Journal of comparative neurology.

[13]  Jean-Marc Constans,et al.  Proton magnetic resonance spectroscopy (1H MRS) in schizophrenia: investigation of the right and left hippocampus, thalamus, and prefrontal cortex. , 2002, Schizophrenia bulletin.

[14]  Bruce S. McEwen,et al.  Stress, memory and the amygdala , 2009, Nature Reviews Neuroscience.

[15]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[16]  Hong-wei Dong,et al.  Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures? , 2010, Neuron.

[17]  M. Mishkin,et al.  Visual recognition in monkeys: effects of separate vs. combined transection of fornix and amygdalofugal pathways , 2004, Experimental Brain Research.

[18]  P. Goldman-Rakic,et al.  Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys , 1981, The Journal of comparative neurology.

[19]  H. Eichenbaum,et al.  Interplay of Hippocampus and Prefrontal Cortex in Memory , 2013, Current Biology.

[20]  D. Gaffan,et al.  Correlation of fornix damage with memory impairment in six cases of colloid cyst removal , 2006, Acta Neurochirurgica.

[21]  T. Humphrey STUDIES OF THE VERTEBRATE TELENCEPHALON , 2004 .

[22]  R. Insausti,et al.  Cortical projections of the non‐entorhinal hippocampal formation in the cynomolgus monkey (Macaca fascicularis) , 2001, The European journal of neuroscience.

[23]  R. Saunders,et al.  Projections from the hippocampal region to the mammillary bodies in macaque monkeys , 2005, The European journal of neuroscience.

[24]  E. Lein,et al.  Functional organization of the hippocampal longitudinal axis , 2014, Nature Reviews Neuroscience.

[25]  K. Saleem,et al.  Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey , 2008, The Journal of comparative neurology.

[26]  G. V. Van Hoesen,et al.  Interhemispheric pathways of the hippocampal formation, presubiculum, and entorhinal and posterior parahippocampal cortices in the rhesus monkey: The structure and organization of the hippocampal commissures , 1985, The Journal of comparative neurology.

[27]  A. Hendrickson,et al.  The autoradiographic demonstration of axonal connections in the central nervous system. , 1972, Brain research.

[28]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[29]  T. Powell,et al.  STUDIES OF THE CONNEXIONS OF THE FORNIX SYSTEM , 1954, Journal of neurology, neurosurgery, and psychiatry.

[30]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: III. Cortical efferents , 2003, The Journal of comparative neurology.

[31]  M Petrides,et al.  Architecture and connections of retrosplenial area 30 in the rhesus monkey (macaca mulatta). , 1999, The European journal of neuroscience.

[32]  Natalie L. M. Cappaert,et al.  The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network , 2009, Nature Reviews Neuroscience.

[33]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[34]  John Q. Trojanowski,et al.  Amygdaloid projections to prefrontal granular cortex in rhesus monkey demonstrated with horseradish peroxidase , 1975, Brain Research.

[35]  T. Hendler,et al.  A causal model of post-traumatic stress disorder: disentangling predisposed from acquired neural abnormalities , 2013, Trends in Cognitive Sciences.

[36]  James N. Davis,et al.  Persistence of sympathetic ingrowth fibers in aged rat hippocampus , 1987, Neurobiology of Aging.

[37]  Song-Lin Ding,et al.  Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent , 2013, The Journal of comparative neurology.

[38]  E. Murray,et al.  Distinct contributions of the amygdala and hippocampus to fear expression , 2009, The European journal of neuroscience.

[39]  H. Barbas,et al.  Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey , 1995, Hippocampus.

[40]  S. Rauch,et al.  Amygdala, Medial Prefrontal Cortex, and Hippocampal Function in PTSD , 2006, Annals of the New York Academy of Sciences.

[41]  E. Fehr,et al.  The neurobiology of rewards and values in social decision making , 2014, Nature Reviews Neuroscience.

[42]  E. Phelps Emotion and cognition: insights from studies of the human amygdala. , 2006, Annual review of psychology.

[43]  J. Aggleton A description of the amygdalo-hippocampal interconnections in the macaque monkey , 2004, Experimental Brain Research.

[44]  Claus C. Hilgetag,et al.  Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala , 2007, NeuroImage.

[45]  H. Barbas,et al.  Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey , 2002, Neuroscience.

[46]  Robert A. Zimmerman,et al.  Proton magnetic resonance spectroscopy , 1999, Critical reviews in neurosurgery : CR.

[47]  P. Vuilleumier,et al.  How brains beware: neural mechanisms of emotional attention , 2005, Trends in Cognitive Sciences.

[48]  Sonia J. Bishop,et al.  Neurocognitive mechanisms of anxiety: an integrative account , 2007, Trends in Cognitive Sciences.

[49]  J. D. McGaugh Memory--a century of consolidation. , 2000, Science.

[50]  J. Price,et al.  Midline and intralaminar thalamic connections with the orbital and medial prefrontal networks in macaque monkeys , 2007, The Journal of comparative neurology.

[51]  H. Barbas,et al.  Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey , 1990, The Journal of comparative neurology.

[52]  Trevor W Robbins,et al.  Forebrain connectivity of the prefrontal cortex in the marmoset monkey (Callithrix jacchus): An anterograde and retrograde tract‐tracing study , 2007, The Journal of comparative neurology.

[53]  N. Logothetis,et al.  A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates , 2007 .

[54]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: I. Three‐dimensional and cytoarchitectonic organization , 2000, The Journal of comparative neurology.

[55]  S. Rauch,et al.  Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways , 2012, Trends in Cognitive Sciences.

[56]  R. Cabeza,et al.  Cognitive neuroscience of emotional memory , 2006, Nature Reviews Neuroscience.

[57]  Hallvard Røe Evensmoen,et al.  Long-axis specialization of the human hippocampus , 2013, Trends in Cognitive Sciences.

[58]  David P. Friedman,et al.  A comparison between the connections of the amygdala and hippocampus with the basal forebrain in the macaque , 2004, Experimental Brain Research.

[59]  M Mishkin,et al.  The origin, course, and termination of the hippocampothalamic projections in the macaque , 1986, The Journal of comparative neurology.

[60]  D. Amaral,et al.  Amygdalo‐cortical projections in the monkey (Macaca fascicularis) , 1984, The Journal of comparative neurology.

[61]  J. Price,et al.  Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys , 1995, The Journal of comparative neurology.

[62]  R. Passingham,et al.  Stereotaxic surgery under X-ray guidance in the rhesus monkey, with special reference to the amygdala , 2004, Experimental Brain Research.

[63]  T. Jay,et al.  Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris‐leucoagglutinin , 1991, The Journal of comparative neurology.

[64]  R. E. Passingham,et al.  Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta) , 1980, Brain Research.

[65]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[66]  D. Amaral,et al.  The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis , 1987, The Journal of comparative neurology.

[67]  Judy A. Prasad,et al.  Viral Tracing Identifies Parallel Disynaptic Pathways to the Hippocampus , 2013, The Journal of Neuroscience.

[68]  P. Goldman-Rakic,et al.  Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey , 1984, Neuroscience.

[69]  G. V. Hoesen,et al.  Temporal neocortical afferent connections to the amygdala in the rhesus monkey , 1976, Brain Research.

[70]  C. Sripada,et al.  The functional neuroanatomy of PTSD: a critical review. , 2008, Progress in brain research.

[71]  H. Kuypers,et al.  Organization of the thalamo-cortical connexions to the frontal lobe in the rhesus monkey , 1977, Experimental Brain Research.

[72]  L. Swanson,et al.  Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex , 2007, Brain Research Reviews.

[73]  W M Cowan,et al.  The commissural connections of the monkey hippocampal formation , 1984, The Journal of comparative neurology.

[74]  D. Amaral,et al.  Perirhinal and parahippocampal cortices of the macaque monkey: Projections to the neocortex , 2002, The Journal of comparative neurology.

[75]  E. Crosby,et al.  Studies of the vertebrate telencephalon. II. The nuclear pattern of the anterior olfactory nucleus, tuberculum olfactorium and the amygdaloid complex in adult man , 1941 .

[76]  C. Geula,et al.  Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey , 1992, The Journal of comparative neurology.

[77]  J. Price,et al.  Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey , 1994, The Journal of comparative neurology.

[78]  C. Gross,et al.  Functional differentiation along the anterior-posterior axis of the hippocampus in monkeys. , 1998, Journal of neurophysiology.

[79]  E. Lauterbach The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction , 1993 .

[80]  Richard C Saunders,et al.  Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: Combined anterograde and retrograde tracing study in the Macaque brain , 2002, The Journal of comparative neurology.

[81]  E. Murray,et al.  Differential Effects of Amygdala, Orbital Prefrontal Cortex, and Prelimbic Cortex Lesions on Goal-Directed Behavior in Rhesus Macaques , 2013, The Journal of Neuroscience.

[82]  J. Aggleton A description of intra-amygdaloid connections in old world monkeys , 2004, Experimental Brain Research.

[83]  Jennifer M. Talarico,et al.  Emotional intensity predicts autobiographical memory experience , 2004, Memory & cognition.

[84]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[85]  L. Goldstein The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction , 1992, The Yale Journal of Biology and Medicine.

[86]  D. Gaffan,et al.  Amnesia following damage to the left fornix and to other sites. A comparative study. , 1991, Brain : a journal of neurology.

[87]  Richard C Saunders,et al.  Origin and topography of fibers contributing to the fornix in macaque monkeys , 2007, Hippocampus.

[88]  J. Price Prefrontal Cortical Networks Related to Visceral Function and Mood , 1999, Annals of the New York Academy of Sciences.

[89]  D L Rosene,et al.  Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non‐reciprocal connections , 1988, The Journal of comparative neurology.

[90]  H. Spiers,et al.  Prefrontal and medial temporal lobe interactions in long-term memory , 2003, Nature Reviews Neuroscience.

[91]  E. Maguire,et al.  What does the retrosplenial cortex do? , 2009, Nature Reviews Neuroscience.

[92]  R. Saunders,et al.  Medial Temporal Lobe Projections to the Retrosplenial Cortex of the Macaque Monkey , 2012, Hippocampus.

[93]  G. Fink,et al.  Cerebral Representation of One’s Own Past: Neural Networks Involved in Autobiographical Memory , 1996, The Journal of Neuroscience.

[94]  Jocelyne Bachevalier,et al.  The Orbitofrontal–amygdala Circuit and Self-regulation of Social–emotional Behavior in Autism , 2022 .

[95]  A. Toga,et al.  The Rhesus Monkey Brain in Stereotaxic Coordinates , 1999 .

[96]  B. Fass,et al.  Effects of fimbria‐fornix transection and ganglioside treatments on histochemical staining for glucose‐6‐phosphate dehydrogenase in the lateral septum , 1987, Synapse.

[97]  Daniela Montaldi,et al.  A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory , 2008, Nature Neuroscience.