Universality of the Heisenberg limit for estimates of random phase shifts

Recent work has suggested that it is possible to perform phase measurements more accurately than the Heisenberg limit. We show that, when one averages over random phase shifts, the Heisenberg limit is universal.

[1]  Z. Y. Ou,et al.  FUNDAMENTAL QUANTUM LIMIT IN PRECISION PHASE MEASUREMENT , 1997 .

[2]  Michael J. W. Hall,et al.  Universal geometric approach to uncertainty, entropy, and information , 1999 .

[3]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[4]  M. Hall Almost-periodic time observables for bound quantum systems , 2008, 0803.3721.

[5]  H. Paul,et al.  Realistic quantum states of light with minimum phase uncertainty , 1991 .

[6]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[7]  Pieter Kok,et al.  General optimality of the Heisenberg limit for quantum metrology. , 2010, Physical review letters.

[8]  Samuel L Braunstein,et al.  Exponentially enhanced quantum metrology. , 2008, Physical review letters.

[9]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[10]  D. Braun,et al.  Heisenberg-limited sensitivity with decoherence-enhanced measurements. , 2011, Nature communications.

[11]  H. M. Wiseman,et al.  How to perform the most accurate possible phase measurements , 2009, 0907.0014.

[12]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[13]  Klauder,et al.  SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.

[14]  Sergio Boixo,et al.  Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.

[15]  G. Summy,et al.  PHASE OPTIMIZED QUANTUM STATES OF LIGHT , 1990 .

[16]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[17]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[18]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[19]  M. Hall Phase Resolution and Coherent Phase States , 1993 .

[20]  Aravind Chiruvelli,et al.  Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. , 2009, Physical review letters.

[21]  Pieter Kok,et al.  Erratum: General Optimality of the Heisenberg Limit for Quantum Metrology [Phys. Rev. Lett. 105, 180402 (2010)] , 2011 .

[22]  H M Wiseman,et al.  Entanglement-enhanced measurement of a completely unknown phase , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[23]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[24]  Howard Mark Wiseman,et al.  Adaptive single-shot phase measurements: A semiclassical approach , 1997 .

[25]  David J. Richardson,et al.  All-optical phase and amplitude regenerator for next-generation telecommunications systems , 2010 .

[26]  I. Bialynicki-Birula,et al.  Uncertainty relations for information entropy in wave mechanics , 1975 .