A concentration-based approach to data classification for choropleth mapping

The choropleth map is a device used for the display of socioeconomic data associated with an areal partition of geographic space. Cartographers emphasize the need to standardize any raw count data by an area-based total before displaying the data in a choropleth map. The standardization process converts the raw data from an absolute measure into a relative measure. However, there is recognition that the standardizing process does not enable the map reader to distinguish between low–low and high–high numerator/denominator differences. This research uses concentration-based classification schemes using Lorenz curves to address some of these issues. A test data set of nonwhite birth rate by county in North Carolina is used to demonstrate how this approach differs from traditional mean–variance-based systems such as the Jenks’ optimal classification scheme.

[1]  Robert E Roth,et al.  Value-by-alpha Maps: An Alternative Technique to the Cartogram , 2010, The Cartographic journal.

[2]  N. Lam Spatial Interpolation Methods: A Review , 1983 .

[3]  Waldo R. Tobler,et al.  Choropleth Maps Without Class Intervals , 2010 .

[4]  P. Pizor Principles of Geographical Information Systems for Land Resources Assessment. , 1987 .

[5]  Ellen K Cromley,et al.  Choropleth map legend design for visualizing community health disparities , 2009, International journal of health geographics.

[6]  O. D. Duncan,et al.  A METHODOLOGICAL ANALYSIS OF SEGREGATION INDEXES , 1955 .

[7]  Walter D. Fisher On Grouping for Maximum Homogeneity , 1958 .

[8]  Jeffrey C. Patton,et al.  SOME Truth with Maps: A Primer on Symbolization and Design , 1995 .

[9]  Michael F. Worboys,et al.  GIS : a computing perspective , 2004 .

[10]  I. Evans The selection of class intervals , 1977 .

[11]  B. D. Dent,et al.  Principles of thematic map design , 1985 .

[12]  Michael F. Goodchild,et al.  Towards a general theory of geographic representation in GIS , 2007, Int. J. Geogr. Inf. Sci..

[13]  N. Cressie,et al.  Spatial Modeling of Regional Variables , 1993 .

[14]  Michael R. C. Coulson In The Matter Of Class Intervals For Choropleth Maps: With Particular Reference To The Work Of George F Jenks , 1987 .

[15]  Mark B. Lindberg,et al.  FISHER: a Turbo Pascal unit for optimal partitions , 1990 .

[16]  Hal S. Stern,et al.  Mapping rates associated with polygons , 2000, J. Geogr. Syst..

[17]  J. V. Ryzin,et al.  Clustering Algorithms@@@Cluster Analysis Algorithms@@@Classification and Clustering , 1981 .

[18]  Robert G. Cromley,et al.  A Comparison of Optimal Classification Strategies for Choroplethic Displays of Spatially Aggregated Data , 1996, Int. J. Geogr. Inf. Sci..

[19]  Dariusz Gosciewski,et al.  The effect of the distribution of measurement points around the node on the accuracy of interpolation of the digital terrain model , 2013, J. Geogr. Syst..

[20]  Terry A. Slocum Thematic Cartography and Geographic Visualization , 2004 .

[21]  Approximation and decomposition of Gini, Pietra–Ricci and Theil inequality measures , 2012 .

[22]  Vincent Kanade,et al.  Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.

[23]  George F. Jenks,et al.  ERROR ON CHOROPLETHIC MAPS: DEFINITION, MEASUREMENT, REDUCTION , 1971 .

[24]  Classification in geography , 1976 .

[25]  Michael F. Goodchild,et al.  Areal interpolation: A variant of the traditional spatial problem , 1980 .

[26]  Edgar M. Hoover,et al.  Interstate Redistribution of Population, 1850–1940 , 1941, The Journal of Economic History.