New results on monotone dualization and generating hypergraph transversals

This paper considers the problem of dualizing a monotone CNF (equivalently, computing all minimal transversals of a hypergraph), whose associated decision problem is a prominent open problem in NP-completeness. We present a number of new polynomial time resp. output-polynomial time results for significant cases, which largely advance the tractability frontier and improve on previous results. Furthermore, we show that duality of two monotone CNFs can be disproved with limited nondeterminism (more precisely, in polynomial time with $O(\log^2 n)$ suitably guessed bits). This result sheds new light on the complexity of this important problem.

[1]  Eugene L. Lawler,et al.  Generating all Maximal Independent Sets: NP-Hardness and Polynomial-Time Algorithms , 1980, SIAM J. Comput..

[2]  Leonid Khachiyan,et al.  On the Complexity of Dualization of Monotone Disjunctive Normal Forms , 1996, J. Algorithms.

[3]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[4]  Dimitrios Gunopulos,et al.  Data mining, hypergraph transversals, and machine learning (extended abstract) , 1997, PODS.

[5]  B. Toft Colouring, stable sets and perfect graphs , 1996 .

[6]  Leonard Pitt,et al.  Generating all maximal independent sets of bounded-degree hypergraphs , 1997, COLT '97.

[7]  D. Gaur,et al.  Satisfiability and self-duality of monotone boolean functions , 1999 .

[8]  Georg Gottlob,et al.  Hypertree decompositions and tractable queries , 1998, J. Comput. Syst. Sci..

[9]  Ramesh Krishnamurti,et al.  Self-Duality of Bounded Monotone Boolean Functions and Related Problems , 2000, ALT.

[10]  Patrick C. Fischer,et al.  Refining Nondeterminism in Relativized Polynomial-Time Bounded Computations , 1980, SIAM J. Comput..

[11]  R. Read Every one a Winner or how to Avoid Isomorphism Search when Cataloguing Combinatorial Configurations , 1978 .

[12]  Anand Rajaraman,et al.  Conjunctive query containment revisited , 1997, Theor. Comput. Sci..

[13]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[14]  Christos H. Papadimitriou,et al.  NP-Completeness: A Retrospective , 1997, ICALP.

[15]  K. Ramamurthy Coherent Structures and Simple Games , 1990 .

[16]  Ronald Fagin,et al.  Degrees of acyclicity for hypergraphs and relational database schemes , 1983, JACM.

[17]  Elias C. Stavropoulos,et al.  Monotone Boolean dualization is in co-NP[log2n] , 2003, Inf. Process. Lett..

[18]  Clement T. Yu,et al.  An algorithm for tree-query membership of a distributed query , 1979, COMPSAC.

[19]  Bin Fu,et al.  Molecular Computing, Bounded Nondeterminism, and Efficient Recursion , 1997, Algorithmica.

[20]  P. Hammer,et al.  Dual subimplicants of positive Boolean functions , 1998 .

[21]  Georg Gottlob,et al.  Identifying the Minimal Transversals of a Hypergraph and Related Problems , 1995, SIAM J. Comput..

[22]  Toshihide Ibaraki,et al.  A Fast and Simple Algorithm for Identifying 2-Monotonic Positive Boolean Functions , 1998, J. Algorithms.

[23]  Roni Khardon Translating between Horn Representations and their Characteristic Models , 1995, J. Artif. Intell. Res..

[24]  Thomas Eiter,et al.  Exact Transversal Hypergraphs and Application to Boolean µ-Functions , 1994, J. Symb. Comput..

[25]  V. D. Thi,et al.  Minimal keys and antikeys , 1986, Acta Cybern..

[26]  Leonard Pitt,et al.  Efficient Read-Restricted Monotone CNF/DNF Dualization by Learning with Membership Queries , 1999, Machine Learning.

[27]  Hector Garcia-Molina,et al.  How to assign votes in a distributed system , 1985, JACM.

[28]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[29]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[30]  Christos H. Papadimitriou,et al.  On Horn Envelopes and Hypergraph Transversals , 1993, ISAAC.

[31]  Judy Goldsmith,et al.  Limited nondeterminism , 1996, SIGA.

[32]  Bruno Simeone,et al.  A O(nm)-Time Algorithm for Computing the Dual of a Regular Boolean Function , 1994, Discret. Appl. Math..

[33]  Toshihide Ibaraki,et al.  The Maximum Latency and Identification of Positive Boolean Functions , 1994, ISAAC.

[34]  Toshihide Ibaraki,et al.  Complexity of Identification and Dualization of Positive Boolean Functions , 1995, Inf. Comput..

[35]  Heikki Mannila,et al.  Design by Example: An Application of Armstrong Relations , 1986, J. Comput. Syst. Sci..

[36]  Vladimir Gurvich,et al.  On Generating All Minimal Integer Solutions for a Monotone System of Linear Inequalities , 2001, ICALP.

[37]  Vladimir Gurvich,et al.  An Efficient Incremental Algorithm for Generating All Maximal Independent Sets in Hypergraphs of Bounded Dimension , 2000, Parallel Process. Lett..

[38]  Kazuhisa Makino Efficient dualization of O(log n)-term monotone disjunctive normal forms , 2003, Discret. Appl. Math..

[39]  Vladimir Gurvich,et al.  Dual-Bounded Generating Problems: All Minimal Integer Solutions for a Monotone System of Linear Inequalities , 2002, SIAM J. Comput..

[40]  Yves Crama,et al.  Dualization of regular Boolean functions , 1987, Discret. Appl. Math..

[41]  Vladimir Gurvich,et al.  On the Complexity of Generating Maximal Frequent and Minimal Infrequent Sets , 2002, STACS.

[42]  Vladimir Gurvich,et al.  Dual-Bounded Generating Problems: Partial and Multiple Transversals of a Hypergraph , 2001, SIAM J. Comput..

[43]  Dimitrios Gunopulos,et al.  Data mining, hypergraph transversals, and machine learning (extended abstract) , 1997, PODS '97.

[44]  Toshihide Ibaraki,et al.  Polynomial-Time Recognition of 2-Monotonic Positive Boolean Functions Given by an Oracle , 1997, SIAM J. Comput..

[45]  Hisao Tamaki,et al.  Space-efficient enumeration of minimal transversals of a hypergraph , 2000 .

[46]  Toshihide Ibaraki,et al.  A Theory of Coteries: Mutual Exclusion in Distributed Systems , 1993, IEEE Trans. Parallel Distributed Syst..

[47]  Christos H. Papadimitriou,et al.  Incremental Recompilation of Knowledge , 1994, AAAI.