Large‐scale inverse model analyses employing fast randomized data reduction

When the number of observations is large, it is computationally challenging to apply classical inverse modeling techniques. We have developed a new computationally-efficient technique for solving inverse problems with a large number of observations (e.g. on the order of 107 or greater). Our method, which we call the randomized geostatistical approach (RGA), is built upon the principal component geostatistical approach (PCGA). We employ a data reduction technique combined with the PCGA to improve the computational efficiency and reduce the memory usage. Specifically, we employ a randomized numerical linear algebra technique based on a so-called “sketching” matrix to effectively reduce the dimension of the observations without losing the information content needed for the inverse analysis. In this way, the computational and memory costs for RGA scale with the information content rather than the size of the calibration data. Our algorithm is coded in Julia and implemented in the MADS open-source high-performance computational framework (http://mads.lanl.gov). We apply our new inverse modeling method to invert for a synthetic transmissivity field. Compared to a standard geostatistical approach (GA), our method is more efficient when the number of observations is large. Most importantly, our method is capable of solving larger inverse problems than the standard GA and PCGA approaches. Therefore, our new model inversion method is a powerful tool for solving large-scale inverse problems. The method can be applied in any field and is not limited to hydrogeological applications such as the characterization of aquifer heterogeneity.

[1]  W. Hackbusch,et al.  Introduction to Hierarchical Matrices with Applications , 2003 .

[2]  T.-C. Jim Yeh,et al.  An iterative geostatistical inverse method for steady flow in the vadose zone , 1996 .

[3]  Michael A. Saunders,et al.  LSRN: A Parallel Iterative Solver for Strongly Over- or Underdetermined Systems , 2011, SIAM J. Sci. Comput..

[4]  Peter K. Kitanidis,et al.  Efficient methods for large‐scale linear inversion using a geostatistical approach , 2012 .

[5]  Walter A. Illman,et al.  Hydraulic tomography using temporal moments of drawdown recovery data: A laboratory sandbox study , 2007 .

[6]  S. P. Neuman,et al.  Three‐dimensional numerical inversion of pneumatic cross‐hole tests in unsaturated fractured tuff: 2. Equivalent parameters, high‐resolution stochastic imaging and scale effects , 2001 .

[7]  T. Yeh,et al.  Analysis of hydraulic tomography using temporal moments of drawdown recovery data , 2006 .

[8]  Qiqi Wang,et al.  Erratum: Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces , 2013, SIAM J. Sci. Comput..

[9]  Bernard Chazelle,et al.  Faster dimension reduction , 2010, Commun. ACM.

[10]  W. Nowak,et al.  Geostatistical inference of hydraulic conductivity and dispersivities from hydraulic heads and tracer data , 2006 .

[11]  W. Illman,et al.  Geostatistical reduced‐order models in underdetermined inverse problems , 2013 .

[12]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 1. Maximum Likelihood Method Incorporating Prior Information , 1986 .

[13]  Michael W. Mahoney,et al.  Implementing Randomized Matrix Algorithms in Parallel and Distributed Environments , 2015, Proceedings of the IEEE.

[14]  S. P. Neuman,et al.  A statistical approach to the inverse problem of aquifer hydrology: 2. Case study , 1980 .

[15]  Peter K. Kitanidis,et al.  The minimum structure solution to the inverse problem , 1997 .

[16]  Cuiping Li,et al.  Waveform inversion with source encoding for breast sound speed reconstruction in ultrasound computed tomography , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[17]  Mario Bebendorf,et al.  Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems , 2008 .

[18]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[19]  Peter K. Kitanidis,et al.  Sensitivity of temporal moments calculated by the adjoint-state method and joint inversing of head and tracer data , 2000 .

[20]  Michael W. Mahoney Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..

[21]  S. P. Neuman,et al.  A statistical approach to the inverse problem of aquifer hydrology: 1. Theory , 1979 .

[22]  J. Krebs,et al.  Fast full-wavefield seismic inversion using encoded sources , 2009 .

[23]  Daniel M. Kane,et al.  Sparser Johnson-Lindenstrauss Transforms , 2010, JACM.

[24]  F. Herrmann,et al.  A new optimization approach for source-encoding full-waveform inversion , 2013 .

[25]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[26]  Tian-Chyi J. Yeh,et al.  Stochastic Fusion of Information for Characterizing and Monitoring the Vadose Zone , 2002 .

[27]  J. Doherty,et al.  A hybrid regularized inversion methodology for highly parameterized environmental models , 2005 .

[28]  V. Rokhlin,et al.  A fast randomized algorithm for overdetermined linear least-squares regression , 2008, Proceedings of the National Academy of Sciences.

[29]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[30]  Wolfgang Nowak,et al.  Parameter Estimation by Ensemble Kalman Filters with Transformed Data , 2010 .

[31]  S. Muthukrishnan,et al.  Faster least squares approximation , 2007, Numerische Mathematik.

[32]  Wolfgang Nowak,et al.  Efficient Computation of Linearized Cross-Covariance and Auto-Covariance Matrices of Interdependent Quantities , 2003 .

[33]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[34]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[35]  Velimir V. Vesselinov,et al.  A computationally efficient parallel Levenberg‐Marquardt algorithm for highly parameterized inverse model analyses , 2016 .

[36]  Peter K. Kitanidis,et al.  Large‐scale hydraulic tomography and joint inversion of head and tracer data using the Principal Component Geostatistical Approach (PCGA) , 2014 .

[37]  W. Illman,et al.  Should hydraulic tomography data be interpreted using geostatistical inverse modeling? A laboratory sandbox investigation , 2015 .

[38]  Sivan Toledo,et al.  Blendenpik: Supercharging LAPACK's Least-Squares Solver , 2010, SIAM J. Sci. Comput..

[39]  David P. Woodruff Sketching as a Tool for Numerical Linear Algebra , 2014, Found. Trends Theor. Comput. Sci..

[40]  P. Kitanidis Quasi‐Linear Geostatistical Theory for Inversing , 1995 .

[41]  Velimir V. Vesselinov,et al.  Blind source separation for groundwater pressure analysis based on nonnegative matrix factorization , 2014 .

[42]  Eric Darve,et al.  Large-scale stochastic linear inversion using hierarchical matrices , 2013, Computational Geosciences.

[43]  Zhigang Zhang,et al.  Efficient implementation of ultrasound waveform tomography using source encoding , 2012, Medical Imaging.

[44]  Andres Alcolea,et al.  Inverse problem in hydrogeology , 2005 .

[45]  Brendt Wohlberg,et al.  UPRE method for total variation parameter selection , 2010, Signal Process..

[46]  P. Kitanidis,et al.  Principal Component Geostatistical Approach for large-dimensional inverse problems , 2014, Water resources research.

[47]  R. Hunt,et al.  Are Models Too Simple? Arguments for Increased Parameterization , 2007, Ground water.

[48]  Peter K. Kitanidis,et al.  Scalable subsurface inverse modeling of huge data sets with an application to tracer concentration breakthrough data from magnetic resonance imaging , 2016 .

[49]  Tamás Sarlós,et al.  Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[50]  Junseob Shin,et al.  Breast ultrasound tomography with two parallel transducer arrays , 2016, SPIE Medical Imaging.

[51]  Michael W. Mahoney,et al.  RandNLA , 2016, Commun. ACM.

[52]  Tan Bui-Thanh,et al.  A data-scalable randomized misfit approach for solving large-scale PDE-constrained inverse problems , 2016, 1603.01562.

[53]  W. Nowak,et al.  A modified Levenberg-Marquardt algorithm for quasi-linear geostatistical inversing , 2004 .

[54]  P. Kitanidis,et al.  Fast iterative implementation of large‐scale nonlinear geostatistical inverse modeling , 2014 .

[55]  Velimir V. Vesselinov,et al.  Three‐dimensional numerical inversion of pneumatic cross‐hole tests in unsaturated fractured tuff: 1. Methodology and borehole effects , 2001 .