Structural insights into the dynamics and function of the C-terminus of the E. coli RNA chaperone Hfq

The hexameric Escherichia coli RNA chaperone Hfq (HfqEc) is involved in riboregulation of target mRNAs by small trans-encoded RNAs. Hfq proteins of different bacteria comprise an evolutionarily conserved core, whereas the C-terminus is variable in length. Although the structure of the conserved core has been elucidated for several Hfq proteins, no structural information has yet been obtained for the C-terminus. Using bioinformatics, nuclear magnetic resonance spectroscopy, synchrotron radiation circular dichroism (SRCD) spectroscopy and small angle X-ray scattering we provide for the first time insights into the conformation and dynamic properties of the C-terminal extension of HfqEc. These studies indicate that the C-termini are flexible and extend laterally away from the hexameric core, displaying in this way features typical of intrinsically disordered proteins that facilitate intermolecular interactions. We identified a minimal, intrinsically disordered region of the C-terminus supporting the interactions with longer RNA fragments. This minimal region together with rest of the C-terminal extension provides a flexible moiety capable of tethering long and structurally diverse RNA molecules. Furthermore, SRCD spectroscopy supported the hypothesis that RNA fragments exceeding a certain length interact with the C-termini of HfqEc.

[1]  Ad Bax,et al.  Three-dimensional triple-resonance NMR Spectroscopy of isotopically enriched proteins. 1990. , 1990, Journal of magnetic resonance.

[2]  J. Correia,et al.  E. coli DNA associated with isolated Hfq interacts with Hfq's distal surface and C-terminal domain. , 2010, Biochimica et biophysica acta.

[3]  B. Melnik,et al.  The structures of mutant forms of Hfq from Pseudomonas aeruginosa reveal the importance of the conserved His57 for the protein hexamer organization. , 2010, Acta crystallographica. Section F, Structural biology and crystallization communications.

[4]  T. Kumasaka,et al.  Expression, crystallization and preliminary crystallographic analysis of RNA-binding protein Hfq (YmaH) from Bacillus subtilis in complex with an RNA aptamer. , 2010, Acta crystallographica. Section F, Structural biology and crystallization communications.

[5]  S. Akiyama Quality control of protein standards for molecular mass determinations by small‐angle X‐ray scattering , 2010 .

[6]  M. Tyers,et al.  Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase. , 2010, Structure.

[7]  B. Večerek,et al.  Translational activation of rpoS mRNA by the non-coding RNA DsrA and Hfq does not require ribosome binding , 2009, Nucleic acids research.

[8]  B. Kallipolitis,et al.  Defining a role for Hfq in Gram-positive bacteria: evidence for Hfq-dependent antisense regulation in Listeria monocytogenes , 2009, Nucleic acids research.

[9]  T. Link,et al.  Structure of Escherichia coli Hfq bound to polyriboadenylate RNA , 2009, Proceedings of the National Academy of Sciences.

[10]  Regulating the regulator: an RNA decoy acts as an OFF switch for the regulation of an sRNA. , 2009, Genes & development.

[11]  B. Felden,et al.  On the facultative requirement of the bacterial RNA chaperone, Hfq. , 2009, Trends in microbiology.

[12]  R. Konrat The protein meta-structure: a novel concept for chemical and molecular biology , 2009, Cellular and Molecular Life Sciences.

[13]  P. Valentin‐Hansen,et al.  Cyanobacteria contain a structural homologue of the Hfq protein with altered RNA‐binding properties , 2009, The FEBS journal.

[14]  J. Vogel,et al.  Multiple target regulation by small noncoding RNAs rewires gene expression at the post-transcriptional level. , 2009, Research in microbiology.

[15]  Christian Griesinger,et al.  Structural Polymorphism of 441-Residue Tau at Single Residue Resolution , 2009, PLoS biology.

[16]  Dmitri I. Svergun,et al.  Electronic Reprint Applied Crystallography Dammif, a Program for Rapid Ab-initio Shape Determination in Small-angle Scattering Applied Crystallography Dammif, a Program for Rapid Ab-initio Shape Determination in Small-angle Scattering , 2022 .

[17]  Michael R. Green,et al.  Solution Conformation and Thermodynamic Characteristics of RNA Binding by the Splicing Factor U2AF65* , 2008, Journal of Biological Chemistry.

[18]  J. Vogel,et al.  Noncoding RNA control of the making and breaking of sugars. , 2008, Genes & development.

[19]  S. Woodson,et al.  The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA. , 2008, RNA.

[20]  M. Fritsche,et al.  Automated sample-changing robot for solution scattering experiments at the EMBL Hamburg SAXS station X33 , 2008, Journal of applied crystallography.

[21]  Kengo Kinoshita,et al.  Prediction of disordered regions in proteins based on the meta approach , 2008, Bioinform..

[22]  Christian Cole,et al.  The Jpred 3 secondary structure prediction server , 2008, Nucleic Acids Res..

[23]  J. Vogel,et al.  Two Seemingly Homologous Noncoding RNAs Act Hierarchically to Activate glmS mRNA Translation , 2008, PLoS biology.

[24]  R. Konrat,et al.  Backbone assignment of osteopontin, a cytokine and cell attachment protein implicated in tumorigenesis , 2008, Biomolecular NMR assignments.

[25]  E. Sonnleitner,et al.  The C-terminal domain of Escherichia coli Hfq is required for regulation , 2007, Nucleic acids research.

[26]  Greg L. Hura,et al.  X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. , 2011, Quarterly reviews of biophysics.

[27]  P. Valentin‐Hansen,et al.  An Hfq-like protein in archaea: crystal structure and functional characterization of the Sm protein from Methanococcus jannaschii. , 2007, RNA.

[28]  R. Schroeder,et al.  Coupling RNA annealing and strand displacement: a FRET-based microplate reader assay for RNA chaperone activity. , 2007, BioTechniques.

[29]  Dmitri I. Svergun,et al.  Upgrade of the small-angle X-ray scattering beamline X33 at the European Molecular Biology Laboratory, Hamburg , 2007 .

[30]  Peter V. Konarev,et al.  ATSAS 2.1 – towards automated and web-supported small-angle scattering data analysis , 2007 .

[31]  B. Wallace,et al.  Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. , 2006, Chemical Society reviews.

[32]  V. Kaberdin,et al.  Translation initiation and the fate of bacterial mRNAs. , 2006, FEMS microbiology reviews.

[33]  Andrew J. Miles,et al.  A reference database for circular dichroism spectroscopy covering fold and secondary structure space , 2006, Bioinform..

[34]  H. Aiba,et al.  Base‐pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq , 2006, Molecular microbiology.

[35]  Lilia M. Iakoucheva,et al.  Intrinsic Disorder Is a Common Feature of Hub Proteins from Four Eukaryotic Interactomes , 2006, PLoS Comput. Biol..

[36]  E. Greenberg,et al.  Hfq‐dependent alterations of the transcriptome profile and effects on quorum sensing in Pseudomonas aeruginosa , 2006, Molecular microbiology.

[37]  N. Majdalani,et al.  Small RNA regulators and the bacterial response to stress. , 2006, Cold Spring Harbor symposia on quantitative biology.

[38]  Andrew B Nobel,et al.  RNA chaperone activity and RNA-binding properties of the E. coli protein StpA , 2007, Nucleic acids research.

[39]  Dmitri I Svergun,et al.  Global rigid body modeling of macromolecular complexes against small-angle scattering data. , 2005, Biophysical journal.

[40]  S. Gottesman Micros for microbes: non-coding regulatory RNAs in bacteria. , 2005, Trends in genetics : TIG.

[41]  B. Večerek,et al.  Translational autocontrol of the Escherichia coli hfq RNA chaperone gene. , 2005, RNA.

[42]  H. Dyson,et al.  Intrinsically unstructured proteins and their functions , 2005, Nature Reviews Molecular Cell Biology.

[43]  S. Yokoyama,et al.  Structure of Pseudomonas aeruginosa Hfq protein. , 2005, Acta crystallographica. Section D, Biological crystallography.

[44]  C. Griesinger,et al.  Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. Feig,et al.  Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs , 2004, Nature Structural &Molecular Biology.

[46]  E. Sonnleitner,et al.  Functional effects of variants of the RNA chaperone Hfq. , 2004, Biochemical and biophysical research communications.

[47]  Jonathan G. Lees,et al.  CDtool-an integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving. , 2004, Analytical biochemistry.

[48]  S. Gottesman The small RNA regulators of Escherichia coli: roles and mechanisms*. , 2004, Annual review of microbiology.

[49]  S. Vajda,et al.  Anchor residues in protein-protein interactions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Peter Tompa,et al.  The role of structural disorder in the function of RNA and protein chaperones , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[51]  Lee Whitmore,et al.  DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data , 2004, Nucleic Acids Res..

[52]  István Simon,et al.  Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. , 2004, Journal of molecular biology.

[53]  O. Pellegrini,et al.  The C-terminal domain of Escherichia coli Hfq increases the stability of the hexamer. , 2004, European journal of biochemistry.

[54]  Branislav Vecerek,et al.  Interaction of the RNA chaperone Hfq with mRNAs: direct and indirect roles of Hfq in iron metabolism of Escherichia coli , 2003, Molecular microbiology.

[55]  T. Afonyushkin,et al.  Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. , 2003, RNA.

[56]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[57]  D. Suck,et al.  Sm-like proteins in Eubacteria: the crystal structure of the Hfq protein from Escherichia coli. , 2003, Nucleic acids research.

[58]  N. Majdalani,et al.  Small non‐coding RNAs, co‐ordinators of adaptation processes in Escherichia coli: the RpoS paradigm , 2003, Molecular microbiology.

[59]  N. Majdalani,et al.  Regulatory roles for small RNAs in bacteria. , 2003, Current opinion in microbiology.

[60]  I. Moll,et al.  RNA chaperone activity of the Sm‐like Hfq protein , 2003, EMBO reports.

[61]  Robert W. Janes,et al.  Calibration and Standardisation of Synchrotron Radiation Circular Dichroism and Conventional Circular Dichroism Spectrophotometers , 2003 .

[62]  I. Zhulin,et al.  Predicted structure and phyletic distribution of the RNA-binding protein Hfq. , 2002, Nucleic acids research.

[63]  P. Valentin‐Hansen,et al.  Structures of the pleiotropic translational regulator Hfq and an Hfq–RNA complex: a bacterial Sm‐like protein , 2002, The EMBO journal.

[64]  E. Sonnleitner,et al.  Functional replacement of the Escherichia coli hfq gene by the homologue of Pseudomonas aeruginosa. , 2002, Microbiology.

[65]  H. Dyson,et al.  Coupling of folding and binding for unstructured proteins. , 2002, Current opinion in structural biology.

[66]  G. Storz,et al.  The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. , 2002, Molecular cell.

[67]  P. Højrup,et al.  Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. , 2002, Molecular cell.

[68]  B. Kräutler,et al.  Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc. , 2001, Journal of molecular biology.

[69]  A. Zhang,et al.  Hfq Is Necessary for Regulation by the Untranslated RNA DsrA , 2001, Journal of bacteriology.

[70]  A. Demchenko,et al.  Recognition between flexible protein molecules: induced and assisted folding † , 2001, Journal of molecular recognition : JMR.

[71]  Christopher J. Oldfield,et al.  Intrinsically disordered protein. , 2001, Journal of molecular graphics & modelling.

[72]  N. Sreerama,et al.  Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. , 2000, Analytical biochemistry.

[73]  J. García de la Torre,et al.  HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. , 2000, Journal of magnetic resonance.

[74]  L. A. Jacobson,et al.  Structural and thermodynamic strategies for site-specific DNA binding proteins. , 2000, Structure.

[75]  Liam J. McGuffin,et al.  The PSIPRED protein structure prediction server , 2000, Bioinform..

[76]  W. C. Johnson,et al.  Analyzing protein circular dichroism spectra for accurate secondary structures , 1999, Proteins.

[77]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[78]  Claus Müller,et al.  The General Theory , 1998 .

[79]  S. Gottesman,et al.  The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. , 1996, The EMBO journal.

[80]  R. Hengge-aronis,et al.  The RNA-binding protein HF-I, known as a host factor for phage Qbeta RNA replication, is essential for rpoS translation in Escherichia coli. , 1996, Genes & development.

[81]  D. Svergun,et al.  CRYSOL : a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates , 1995 .

[82]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[83]  S. Arvidson,et al.  Activation of alpha‐toxin translation in Staphylococcus aureus by the trans‐encoded antisense RNA, RNAIII. , 1995, The EMBO journal.

[84]  L. Kay,et al.  Spectral density function mapping using 15N relaxation data exclusively , 1995, Journal of biomolecular NMR.

[85]  T. Pawson,et al.  Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. , 1994, Biochemistry.

[86]  M. Wittekind,et al.  HNCACB, a High-Sensitivity 3D NMR Experiment to Correlate Amide-Proton and Nitrogen Resonances with the Alpha- and Beta-Carbon Resonances in Proteins , 1993 .

[87]  Ad Bax,et al.  Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins , 1993, Journal of biomolecular NMR.

[88]  A. V. Semenyuk,et al.  GNOM – a program package for small-angle scattering data processing , 1991 .

[89]  I. V. van Stokkum,et al.  Estimation of protein secondary structure and error analysis from circular dichroism spectra. , 1990, Analytical biochemistry.

[90]  Ad Bax,et al.  Proton-proton correlation via carbon-carbon couplings: a three-dimensional NMR approach for the assignment of aliphatic resonances in proteins labeled with carbon-13 , 1990 .

[91]  B. Wallace,et al.  Folding of the mitochondrial proton adenosinetriphosphatase proteolipid channel in phospholipid vesicles. , 1982, Biochemistry.

[92]  S. Provencher,et al.  Estimation of globular protein secondary structure from circular dichroism. , 1981, Biochemistry.