Set membership localization of mobile robots via angle measurements

This paper addresses the localization problem for a mobile robot navigating in an unstructured outdoor environment. A new technique is introduced, for computing an estimate of the position of the robot and the related uncertainty region, in the presence of visual angle measurements affected by bounded errors. The proposed set membership estimation procedure exploits the structure of the static set estimator, to solve recursively the dynamic localization problem.

[1]  Kalevi Hyyppä,et al.  AGV navigation by angle measurements , 1988 .

[2]  Jerry H. Ginsberg,et al.  Advanced Engineering Dynamics , 1988 .

[3]  Gustavo Belforte,et al.  Parameter estimation algorithms for a set-membership description of uncertainty , 1990, Autom..

[4]  Tod S. Levitt,et al.  Qualitative Navigation for Mobile Robots , 1990, Artif. Intell..

[5]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[6]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[7]  Federico Thomas,et al.  Set membership approach to the propagation of uncertain geometric information , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[8]  John J. Leonard,et al.  Directed Sonar Sensing for Mobile Robot Navigation , 1992 .

[9]  Hiroshi Ishiguro,et al.  Omni-Directional Stereo , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Gregory D. Hager,et al.  On comparing statistical and set-based methods in sensor data fusion , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[11]  Alonzo Kelly,et al.  A 3D State Space Formulation of a Navigation Kalman Filter for Autonomous Vehicles , 1994 .

[12]  Alexander B. Kurzhanski,et al.  Modeling Techniques for Uncertain Systems , 1994 .

[13]  William B. Thompson,et al.  Localizing in unstructured environments: dealing with the errors , 1994, IEEE Trans. Robotics Autom..

[14]  Luigi Chisci,et al.  Recursive state bounding by parallelotopes , 1996, Autom..

[15]  A. Vicino,et al.  Sequential approximation of feasible parameter sets for identification with set membership uncertainty , 1996, IEEE Trans. Autom. Control..

[16]  U. Hanebeck,et al.  Set theoretic localization of fast mobile robots using an angle measurement technique , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[17]  Liqiang Feng,et al.  Navigating Mobile Robots: Systems and Techniques , 1996 .

[18]  Patrick Hébert,et al.  Uncertain map making in natural environments , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[19]  Margrit Betke,et al.  Mobile robot localization using landmarks , 1997, IEEE Trans. Robotics Autom..

[20]  Claus B. Madsen,et al.  Optimal landmark selection for triangulation of robot position , 1998, Robotics Auton. Syst..

[21]  José A. Castellanos,et al.  Mobile Robot Localization and Map Building , 1999 .

[22]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[23]  Clark F. Olson,et al.  Probabilistic self-localization for mobile robots , 2000, IEEE Trans. Robotics Autom..

[24]  A. Vicino,et al.  A set theoretic approach to the simultaneous localization and map building problem , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[25]  H. Durrant-Whyte,et al.  A closed form solution to the single degree of freedom simultaneous localisation and map building (SLAM) problem , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[26]  José A. Castellanos,et al.  Mobile Robot Localization and Map Building: A Multisensor Fusion Approach , 2000 .